Skip to main content
Log in

Effect of incorporation of Halloysite nanotubes on the structure and properties of low-density polyethylene/thermoplastic starch blend

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The hypothesis that the incorporation of halloysite nanotubes (HNTs) into low-density polyethylene (LDPE)/thermoplastic starch (TPS) blends could lead to materials with mechanical and flow properties close to those of pure LDPE but with improved potential biodegradability, was investigated. A 50 wt.%/50 wt.% LDPE/TPS blend was prepared via extrusion and injection molding, by using different HNT contents up to 8 wt.%. The obtained nanocomposite structure and properties was investigated. The SEM images and EDS analyses indicated that the HNTs were preferentially located within the starch-rich phases of the blend. Moreover, the addition of 8 wt.% HNTs to the LDPE/TPS blend promoted a pronounced enhancement in mechanical properties with respect to those of the original blend, leading to properties resembling those of pure LDPE. The results suggest that nanocomposites can be interesting candidates for the replacement of LDPE in applications in which the biodegradability of the proposed blend can reduce the environmental impact of traditional LDPE short-life products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World O, Day E, Communications N (2018) The future of plastic editorial. Nat Commun 9:1–3. https://doi.org/10.1038/s41467-018-04565-2

    Article  CAS  Google Scholar 

  2. Hamad K, Kaseem M, Ko YG, Deri F (2014) Biodegradable polymer blends and composites: an overview. Polym Sci Ser A 56:812–829. https://doi.org/10.1134/S0965545X14060054

    Article  CAS  Google Scholar 

  3. Peres AM, Pires RR, Oréfice RL (2016) Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends. Carbohydr Polym 136:210–215. https://doi.org/10.1016/j.carbpol.2015.09.047

    Article  CAS  PubMed  Google Scholar 

  4. Singh N, Singh J, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231. https://doi.org/10.1016/S0308-8146(02)00416-8

    Article  CAS  Google Scholar 

  5. Xie F, Halley PJ, Avérous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37:595–623. https://doi.org/10.1016/j.progpolymsci.2011.07.002

    Article  CAS  Google Scholar 

  6. García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210. https://doi.org/10.1016/j.carbpol.2010.11.024

    Article  CAS  Google Scholar 

  7. Ren J, Dang KM, Pollet E, Avérous L (2018) Preparation and characterization of thermoplastic potato starch/halloysite nano-biocomposites: effect of plasticizer nature and nanoclay content. Polymers (Basel) 10:808. https://doi.org/10.3390/polym10080808

    Article  CAS  PubMed Central  Google Scholar 

  8. Park J, Kim G, Moon J (2013) Effects of a Compatibilizer on the tensile properties of low-density polyethylene/modified starch blends. J Environ Sci Int 22:1287–1294. https://doi.org/10.5322/jesi.2013.22.10.1287

    Article  Google Scholar 

  9. Altskär A, Andersson R, Boldizar A, Koch K, Stading M, Rigdahl M et al (2008) Some effects of processing on the molecular structure and morphology of thermoplastic starch. Carbohydr Polym 71:591–597. https://doi.org/10.1016/j.carbpol.2007.07.003

    Article  CAS  Google Scholar 

  10. Khanam PN, AlMaadeed MAA (2015) Processing and characterization of polyethylene-based composites. Adv Manuf Polym Compos Sci 1:63–79. https://doi.org/10.1179/2055035915Y.0000000002

    Article  Google Scholar 

  11. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22. https://doi.org/10.1016/j.progpolymsci.2011.07.002

    Article  CAS  Google Scholar 

  12. Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polym Test 32:482–491. https://doi.org/10.1016/j.polymertesting.2013.01.004

    Article  CAS  Google Scholar 

  13. Sabetzadeh M, Bagheri R, Masoomi M (2015) Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr Polym 119:126–133. https://doi.org/10.1016/j.carbpol.2015.12.057

    Article  CAS  PubMed  Google Scholar 

  14. Ning W, Jiugao Y, Xiaofei M, Ying W (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr Polym 67:446–453. https://doi.org/10.1016/j.carbpol.2006.06.014

    Article  CAS  Google Scholar 

  15. Mazerolles T, Heuzey MC, Soliman M, Martens H, Kleppinger R, Huneault MA (2020) Development of multilayer barrier films of thermoplastic starch and low-density polyethylene. J Polym Res 27:1–15. https://doi.org/10.1007/s10965-020-2015-y

    Article  CAS  Google Scholar 

  16. Chandra R, Rustgi R (1997) Biodegradation of maleated linear low-density polyethylene and starch blends. Polym Degrad Stab 56:185–202. https://doi.org/10.1016/S0141-3910(96)00212-1

    Article  CAS  Google Scholar 

  17. Abdullah ZW, Dong Y (2018) Preparation and characterisation of poly(vinyl) alcohol (PVA)/starch (ST)/halloysite nanotube (HNT) nanocomposite films as renewable materials. J Mater Sci 53:3455–3469. https://doi.org/10.1007/s10853-017-1812-0

    Article  CAS  Google Scholar 

  18. Dang KM, Yoksan R (2015) Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115:575–581. https://doi.org/10.1016/j.carbpol.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  19. Cai J, Liu M, Wang L, Yao K, Li S, Xiong H (2011) Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydr Polym 86:941–947. https://doi.org/10.1016/j.carbpol.2011.05.044

    Article  CAS  Google Scholar 

  20. Córdoba A, Cuéllar N, González M, Medina J (2008) The plasticizing effect of alginate on the thermoplastic starch/glycerin blends. Carbohydr Polym 73:409–416. https://doi.org/10.1016/j.carbpol.2007.12.007

    Article  CAS  Google Scholar 

  21. Inceoglu F, Menceloglu YZ (2013) Transparent low-density polyethylene/starch nanocomposite films. J Appl Polym Sci 129:1907–1914. https://doi.org/10.1002/app.38811

    Article  CAS  Google Scholar 

  22. Müller K, Bugnicourt E, Latorre M, Jorda M, Echegoyen Sanz Y, Lagaron J, Miesbauer O, Bianchin A, Hankin S, Bölz U, Pérez G, Jesdinszki M, Lindner M, Scheuerer Z, Castelló S, Schmid M (2017) Review on the processing and properties of polymer Nanocomposites and Nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7:74–121. https://doi.org/10.3390/nano7040074

    Article  CAS  PubMed Central  Google Scholar 

  23. Schmitt H, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohydr Polym 89:920–927. https://doi.org/10.1016/j.carbpol.2012.04.037

    Article  CAS  PubMed  Google Scholar 

  24. Inuwa IM, Che Abdul Razak N, Arjmandi R, Hassan A (2018) Effects of halloysite nanotubes on the mechanical, thermal, and flammability properties of PP-g-MAH compatibilized polyethylene terephthalate/polypropylene nanocomposites. Polym Compos 39:E1554–E1564. https://doi.org/10.1002/pc.24470

    Article  CAS  Google Scholar 

  25. Raee E, Kaffashi B (2018) Biodegradable polypropylene/thermoplastic starch nanocomposites incorporating halloysite nanotubes. J Appl Polym Sci 135:45740. https://doi.org/10.1002/app.45740

    Article  CAS  Google Scholar 

  26. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715. https://doi.org/10.1016/j.biomaterials.2005.11.037

    Article  CAS  PubMed  Google Scholar 

  27. Alanalp MB, Durmus A, Aydin I (2019) Quantifying effect of inorganic filler geometry on the structural, rheological and viscoelastic properties of polypropylene-based thermoplastic elastomers. J Polym Res 26:1–14. https://doi.org/10.1007/s10965-019-1711-y

    Article  CAS  Google Scholar 

  28. Abdullayev E, Lvov Y (2015) Halloysite clay nanotubes for controlled release of protective agents Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2:814–820. https://doi.org/10.1166/jnn.2011.5724

    Article  CAS  Google Scholar 

  29. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582. https://doi.org/10.1002/pi.2754

    Article  CAS  Google Scholar 

  30. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295

    CAS  Google Scholar 

  31. Pasbakhsh P, Ismail H, Fauzi MNA, Bakar AA (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48:405–413. https://doi.org/10.1016/j.clay.2010.01.015

  32. Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer (Guildf) 49:4871–4876. https://doi.org/10.1016/j.polymer.2008.08.042

    Article  CAS  Google Scholar 

  33. Zhong B, Wang S, Dong H, Luo Y, Jia Z, Zhou X, Chen M, Xie D, Jia D (2017) Halloysite tubes as Nanocontainers for herbicide and its controlled release in biodegradable poly(vinyl alcohol)/starch film. J Agric Food Chem 65:10445–10451. https://doi.org/10.1021/acs.jafc.7b04220

    Article  CAS  PubMed  Google Scholar 

  34. Tang Y, Ye L, Deng S, Yang C, Yuan W (2012) Influences of processing methods and chemical treatments on fracture toughness of halloysite – epoxy composites. Mater Des 42:471–477. https://doi.org/10.1016/j.matdes.2012.06.036

    Article  CAS  Google Scholar 

  35. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5:295–307. https://doi.org/10.3144/expresspolymlett.2011.30

    Article  CAS  Google Scholar 

  36. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93. https://doi.org/10.1016/j.clay.2015.05.001

    Article  CAS  Google Scholar 

  37. Höfler G, Lin RJT, Jayaraman K (2018) Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes. J Polym Res 25:1–10. https://doi.org/10.1007/s10965-018-1525-3

    Article  CAS  Google Scholar 

  38. Yang K, Chi Q, Wang X, Jiang YS, Li F, Xue B (2019) The role of halloy site on crystallinity, ion conductivity, thermal and mechanical properties of poly(ethylene-oxide)/halloysite nanocomposites. J Polym Res 26:1–11. https://doi.org/10.1007/s10965-019-1803-8

    Article  CAS  Google Scholar 

  39. Ismail H, Pasbakhsh P, Ahmad Fauzi MN, Abu BA (2009) The effect of halloysite nanotubes as a novel nanofiller on curing behaviour, mechanical and microstructural properties of ethylene propylene diene monomer (EPDM) nanocomposites. Polym - Plast Technol Eng 48:313–323. https://doi.org/10.1080/03602550802675736

    Article  CAS  Google Scholar 

  40. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J et al (1985) Reporting physisorption data for gas/solid systems — with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  41. Singh VP, Vimal KK, Kapur GS, Sharma S, Choudhary V (2016) High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. J Polym Res 23:1–17. https://doi.org/10.1007/s10965-016-0937-1

    Article  CAS  Google Scholar 

  42. Guo B, Zou Q, Lei Y, Du M, Liu M, Jia D (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484:48–56. https://doi.org/10.1016/j.tca.2008.12.003

    Article  CAS  Google Scholar 

  43. Mirabella FM, Bafna A (2002) Determination of the crystallinity of polyethylene/α-olefin copolymers by thermal analysis: relationship of the heat of fusion of 100% polyethylene crystal and the density. J Polym Sci Part B Polym Phys 40:1637–1643. https://doi.org/10.1002/polb.10228

    Article  CAS  Google Scholar 

  44. Corradini E, De Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2006) Mechanical and morphological characterization of starch/zein blends plasticized with glycerol. J Appl Polym Sci 101:4133–4139. https://doi.org/10.1002/app.23570

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CNPq, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, Finance Code 001) and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson M. Peres.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres, A.M., Oréfice, R.L. Effect of incorporation of Halloysite nanotubes on the structure and properties of low-density polyethylene/thermoplastic starch blend. J Polym Res 27, 211 (2020). https://doi.org/10.1007/s10965-020-02185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02185-3

Keywords

Navigation