Skip to main content
Log in

Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Extensive experiments with rotationally moulded polyethylene halloysite nanocomposites have been conducted. Previous studies regarding the use of filler materials in rotational moulding often report problems with agglomerations or inward migration of the filler. Despite the previous advances in machine adaptations and mould configurations to apply internal pressure, this study has focused mainly on non-pressurized composite production. Halloysite is a natural, nano-size, mineral clay with different reactivities from the internal aluminol and external siloxane surfaces. Due to its morphology and chemical nature, halloysite is easier to process compared to other fillers and achieves good particle dispersion, making it a potential candidate for reinforcing rotationally moulded products. In this study, nanoparticle-reinforced composites containing halloysite with medium density or high density polyethylene were produced by rotational moulding. The influence of halloysite on the melt flow index and mechanical performance, tensile, flexural and impact properties, were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Crawford R.J. and Throne J.L. (2001) Rotational molding technology. Williams Andrew Publishing/Plastics Design Library, Norwich, USA, 2001

  2. Crawford RJ, Kearns MP (2003) Practical guide to rotational Moulding. Rapra Technology Limited, Telford, UK

    Google Scholar 

  3. Lescher P.E. (2010) Moulding of water-free thermoplastic starch blends. Ph.D. Thesis, The University of Auckland

  4. Yan W, Lin R, Bhattacharyya D (2006) Particulate reinforced rotationally moulded polyethylene composites–mixing methods and mechanical properties. Compos Sci Technol 66(13):2080–2088

    Article  CAS  Google Scholar 

  5. Yan W, Lin RJT, Bickerton S, Bhattacharyya D (2003) Rotational moulding of particulate reinforced polymeric shell structures. Mater Sci Forum 437–438:235–238

    Article  Google Scholar 

  6. Ortega Z, Monzón MD, Benítez AN, Kearns M, McCourt M, Hornsby PR (2013) Banana and abaca fiber-reinforced plastic composites obtained by rotational molding process. Mater Manuf Process 28(8):879–883

    CAS  Google Scholar 

  7. Torres FG, Aguirre M (2003) Rotational moulding and powder processing of natural fibre reinforced thermoplastics. Int Polym Process 18(2):204–210

    Article  CAS  Google Scholar 

  8. Lee SM (1992) Handbook of composite reinforcements. Wiley, California, USA

    Google Scholar 

  9. Gogos G (2004) Bubble removal in rotational molding. Polym Eng Sci 44(2):388–394

    Article  CAS  Google Scholar 

  10. Harkin-Jones E, Crawford RJ (1996) Mechanical properties of rotationally molded nyrim. Polym Eng Sci 36(5):615–625

    Article  CAS  Google Scholar 

  11. Steinberg AH, Petruccelli F, Lucas ME, Zlatkevich L (1985) Rotational molding multilayered articles. US Patent No 4:548,779

    Google Scholar 

  12. Lin R, Bhattacharyya D, Fakirov S (2006) Mechanical properties of rotationally molded PET microfibril reinforced composites. International Journal of Modern Physics B 20(25n27):4613–4618

    Article  CAS  Google Scholar 

  13. Jayaraman K., Lin R., Bose D., Maarouf M. (2007) Natural fibre-reinforced thermoplastics processed by rotational moulding Advanced Materials Research Vol 29 Trans Tech Publications

  14. Yuan X, Easteal A, Bhattacharyya D (2007) Mechanical performance of rotomoulded wollastonite-reinforced polyethylene composites. International Journal of Modern Physics B 21(07):1059–1066

    Article  CAS  Google Scholar 

  15. Liu S, Peng K (2010) Rotational molding of polycarbonate reinforced polyethylene composites: processing parameters and properties. Polym Eng Sci 50(7):1457–1465

    Article  CAS  Google Scholar 

  16. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals—a review. Clay Miner 40(4):383–426

    Article  CAS  Google Scholar 

  17. Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112:75–93

    Article  CAS  Google Scholar 

  18. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295

    CAS  Google Scholar 

  19. Pedrazzoli D, Pegoretti A, Thomann R, Kristóf J, Karger-Kocsis J (2015) Toughening linear low-density polyethylene with halloysite nanotubes. Polym Compos 36(5):869–883

    Article  CAS  Google Scholar 

  20. Guth E (1945) Theory of filler reinforcement. Journal of Applied Physics 16:20–25

    Article  CAS  Google Scholar 

  21. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker Inc.

  22. Verbeek CJR (2003) The influence of interfacial adhesion, particle size and size distribution on the predicted mechanical properties of particulate thermoplastic composites. Mater Lett 57(13):1919–1924

    Article  CAS  Google Scholar 

  23. Nielsen LE (1966) Simple theory of stress–strain properties of filled polymers. J Appl Polym Sci 10:97–103

    Article  CAS  Google Scholar 

  24. Nicolais L, Narkis M (1971) Stress–strain behavior of styrene-acrylonitrile/glass bead composites in the glassy region. Polym Eng Sci 11(3):194–199

    Article  CAS  Google Scholar 

  25. Scott GD (1960) Packing of spheres. Nature 188:908–909

    Article  Google Scholar 

  26. Joussein E, Petit S, Delvaux B (2007) Behavior of halloysite clay under formamide treatment. Appl Clay Sci 35(1):17–24

    Article  CAS  Google Scholar 

  27. Verbeek CJR, Focke WW (2002) Modelling the Young's modulus of platelet reinforced thermoplastic sheet composites. Compos A: Appl Sci Manuf 33(12):1697–1704

    Article  Google Scholar 

  28. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307

    Article  CAS  Google Scholar 

  29. Kinloch IA, Roberts SA, Windle AH (2002) A rheological study of concentrated aqueous nanotube dispersions. Polymer 43(26):7483–7491

    Article  CAS  Google Scholar 

  30. Aladag B, Halelfadl S, Doner N, Maré T, Duret S, Estellé P (2012) Experimental investigations of the viscosity of nanofluids at low temperatures. Appl Energy 97:876–880

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to the Ministry of Business, Innovation and Employment for financial support to the project, and to Vision Plastics New Zealand Ltd. for materials supply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Höfler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höfler, G., Lin, R.J.T. & Jayaraman, K. Rotational moulding and mechanical characterisation of halloysite reinforced polyethylenes. J Polym Res 25, 132 (2018). https://doi.org/10.1007/s10965-018-1525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1525-3

Keywords

Navigation