Skip to main content
Log in

Self-assembly of linear-hyperbranched hybrid block polymers: crystallization-driven or solvent-driven?

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Self-assembly of polyethylene-block-hyperbranched polyglycidol diblock polymers (PE1-b-hbPG7-OH8 and PE1-b-hbPG26-OH27) in selective or slightly selective or nonselective solvents of PE segments were investigated by microscopy (TEM, SEM and AFM). Study showed that both polymers can be assembled into a diamond-shaped lamellae driving by PE crystallization in toluene solvent, composed of PE single-crystal layer sandwiched between two hbPG layers tethered on the top and bottom basal surfaces. However, by adding the toluene solution of polymers to THF and MeOH, the morphology of the aggregate changed from lamellae to rod or sphere, indicating the change of driving force from the crystallization of PE block to the interaction parameter (χ) between hbPG block and solvent. In addition, the degree of polymerization (DP) of hbPG segments affected the thickness of the lamellae (in toluene) and the shape and size of the rodlike or spherical aggregate (in mixed solvent), determined by the relative volume fractions of PE and hbPG chains in selective solvents.

Polyethylene-block-hyperbranched polyglycidol diblock polymers (PE1-b-hbPG7-OH8 and PE1-b-hbPG26-OH27) can self-assemble into diamond-shaped lamellae aggregate in toluene and into rodlike aggregate or spherical aggregate in mixed solutions, driving by PE crystallization and block-solvent interaction parameter (χ) respectively. The driving forces can be controlled simply by adjusting the polarity of solvents as well as DP of hbPG segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  2. Wurm F, Frey H (2011) Linear–dendritic block copolymers: the state of the art and exciting perspectives. Prog Polym Sci 36:1–52

    Article  CAS  Google Scholar 

  3. Wang Z, Zhan X, Chen F, Zhang X, Ouyang Q, Zhang Q (2016) Precise preparation, microstructures, micromechanical behavior and morphology of well-defined PS-b-PS/Bd-b-PS triblock copolymers via RAFT seeded miniemulsion polymerization. J Polym Res 23:253

    Article  Google Scholar 

  4. Zhang L, Eisenberg A (1998) Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym Adv Technol 9:677–699

    Article  CAS  Google Scholar 

  5. Cameron NS, Corbierre MK, Eisenberg A (1991) 1998 E.W.R. Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Can J Chem 77:1311–1326

    Article  Google Scholar 

  6. Hillmyer MA, Lodge TP (2002) Synthesis and self-assembly of fluorinated block copolymers. J Polym Sci A Polym Chem 40:1–8

    Article  CAS  Google Scholar 

  7. Semsarzadeh MA, Ghahramani M (2016) Synthesis and characterization of poly (ethyl methacrylate)-b-poly(dimethyl siloxane)-b-poly(ethyl methacrylate) triblock copolymer: the effect of solvent on morphology. J Polym Res 23:148

    Article  Google Scholar 

  8. He WN, Xu JT (2012) Crystallization assisted self-assembly of semicrystalline block copolymers. Prog Polym Sci 37:1350–1400

    Article  CAS  Google Scholar 

  9. Prasitnok K (2018) Coarse-grained modelling of self-assembling poly(ethylene glycol)/poly(lactic acid) diblock copolymers. J Polym Res 25:69

    Article  Google Scholar 

  10. Wu D, Huang Y, Xu F, Mai Y, Yan D (2017) Recent advances in the solution self-assembly of amphiphilic “rod-coil” copolymers. J Polym Sci A Polym Chem 55:1459–1477

    Article  CAS  Google Scholar 

  11. Peng C, Zhao W, Wu A, Zhou N, Chen S (2018) Self-assembly between photoresponsive azobenzene-based dications and thermally sensitive PNIPAM-b-PAA block copolymers in aqueous solution. J Polym Res 25:63

    Article  Google Scholar 

  12. Lopresti C, Lomas H, Massignani M, Smart T, Battaglia G (2009) Polymersomes: nature inspired nanometer sized compartments. J Mater Chem 19:3576–3590

    Article  CAS  Google Scholar 

  13. Azzam T, Eisenberg A (2006) Control of vesicular morphologies through hydrophobic block length. Angew Chem Int Ed 45:7443–7447

    Article  Google Scholar 

  14. Terreau O, Bartels C, Eisenberg A (2004) Effect of poly(acrylic acid) block length distribution on polystyrene-b-poly(acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram. Langmuir 20:637–645

    Article  CAS  Google Scholar 

  15. Besenius P (2016) Controlling supramolecular polymerization through multicomponent self-assembly. J Polym Sci A Polym Chem 55:34–78

    Article  Google Scholar 

  16. Xu JT, Jin W, Liang GD, Fan ZQ (2005) Crystallization and coalescence of block copolymer micelles in semicrystalline block copolymer/amorphous homopolymer blends. Polymer 46:1709–1716

    Article  CAS  Google Scholar 

  17. Mihut AM, Crassous JJ, Schmalz H, Drechsler M, Ballauff M (2012) Self-assembly of crystalline-coil diblock copolymers in solution: experimental phase map. Soft Matter 8:3163–3173

    Article  CAS  Google Scholar 

  18. Su M, Huang H, Ma X, Wang Q, Su Z (2013) Poly(2-vinylpyridine)-block-poly(ϵ-caprolactone) single crystals in micellar solution. Macromol Rapid Commun 34:1067–1071

    Article  CAS  Google Scholar 

  19. Du Z, Xu J, Fan Z (2007) Micellar morphologies of poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymers in water with a crystalline core. Macromolecules 40:7633–7637

    Article  CAS  Google Scholar 

  20. Petzetakis N, Dove AP, O'Reilly RK (2011) Cylindrical micelles from the living crystallization-driven self-assembly of poly (lactide)-containing block copolymers. Chem Sci 2:955–960

    Article  CAS  Google Scholar 

  21. Pitto-Barry A, Kirby N, Dove AP, O'Reilly RK (2014) Expanding the scope of the crystallization-driven self-assembly of polylactide-containing polymers. Polym Chem 5:1427–1436

    Article  CAS  Google Scholar 

  22. Lazzari M, Lopez-Quintela MA (2009) Micellization phenomena in semicrystalline block copolymers: reflexive and critical views on the formation of cylindrical micelles. Macromol Rapid Commun 30:1785–1791

    Article  CAS  Google Scholar 

  23. Wang MJ, Wang H, Chen SC, Chen C, Liu Y (2015) Morphological control of anisotropic self-assemblies from alternating poly(p-dioxanone)-poly(ethylene glycol) multiblock copolymer depending on the combination effect of crystallization and micellization. Langmuir 31:6971–6980

    Article  CAS  Google Scholar 

  24. Qian J, Li X, Lunn DJ, Gwyther J, Hudson ZM, Kynaston E, Rupar PA, Winnik MA, Manners I (2014) Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J Am Chem Soc 136:4121–4124

    Article  CAS  Google Scholar 

  25. Wang HF, Wu C, Xia GM, Ma Z, Mo G, Song R (2015) Semi-crystalline polymethylene-b-poly(acrylic acid) diblock copolymers: aggregation behavior, confined crystallization and controlled growth of semicrystalline micelles from dilute DMF solution. Soft Matter 11:1778–1787

    Article  CAS  Google Scholar 

  26. He Q, Yuan Y, Chen FX, Ma Z, Zhu XQ, Song R (2017) Polymethylene-b-poly(acrylic acid) diblock copolymers: morphology and crystallization evolution influenced by polyethyene polyamine with dual confinement effects. Polymer 108:322–331

    Article  CAS  Google Scholar 

  27. Bloksma MM, Höppener S, D'Haese C, Kempe K, Mansfeld U, Paulus RM, Gohy JF, Schubert US, Hoogenboom R (2011) Self-assembly of chiral block and gradient copolymers. Soft Matter 8:165–172

    Article  Google Scholar 

  28. Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA (2007) Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317:644–647

    Article  CAS  Google Scholar 

  29. Gao Y, Qiu H, Zhou H, Li X, Harniman R, Winnik MA, Manners I (2015) Crystallization-driven solution self-assembly of block copolymers with a photocleavable junction. J Am Chem Soc 137:2203–2206

    Article  CAS  Google Scholar 

  30. Lin EK, Gast AP (1996) Semicrystalline diblock copolymer platelets in dilute solution. Macromolecules 29:4432–4441

    Article  CAS  Google Scholar 

  31. Yin L, Hillmyer MA (2011) Disklike micelles in water from polyethylene-containing diblock copolymers. Macromolecules 44:3021–3028

    Article  CAS  Google Scholar 

  32. Yin L, Lodge TP, Hillmyer MA (2012) A stepwise “micellization–crystallization” route to oblate ellipsoidal, cylindrical, and bilayer micelles with polyethylene cores in water. Macromolecules 45:9460–9467

    Article  CAS  Google Scholar 

  33. Till PH (1957) The growth of single crystals of linear polyethylene. J Polym Sci 24:301–306

    Article  CAS  Google Scholar 

  34. Fan B, Wang RY, Wang XY, Xu JT, Du BY, Fan ZQ (2017) Crystallization-driven co-assembly of micrometric polymer hybrid single crystals and nanometric crystalline micelles. Macromolecules 50:2006–2015

    Article  CAS  Google Scholar 

  35. Organ SJ, Keller A (1985) Solution crystallization of polyethylene at high temperatures. J Mater Sci 20:1602–1615

    Article  CAS  Google Scholar 

  36. Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) The crystallization of ultralong normal paraffins: the onset of chain folding. Science 229:386–389

    Article  CAS  Google Scholar 

  37. Schmalz H, Schmelz J, Drechsler M, Yuan JY, Walther A, Schweimer K, Mihutet AM (2008) Thermo-reversible formation of wormlike micelles with a microphase-separated corona from a semicrystalline triblock terpolymer. Macromolecules 41:3235–3242

    Article  CAS  Google Scholar 

  38. Schmelz J, Karg M, Hellweg T, Schmalz H (2011) General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 5:9523–9534

    Article  CAS  Google Scholar 

  39. Schmelz J, Schedl AE, Steinlein C, Manners I, Schmalz H (2012) Length control and block-type architectures in worm-like micelles with polyethylene cores. J Am Chem Soc 134:14217–14225

    Article  CAS  Google Scholar 

  40. Schöbel J, Karg M, Rosenbach D, Krauss G, Greiner A, Schmalz H (2016) Patchy wormlike micelles with tailored functionality by crystallization-driven self-assembly: a versatile platform for mesostructured hybrid materials. Macromolecules 49:2761–2771

    Article  Google Scholar 

  41. Fan B, Liu L, Li JH, Ke XX, Xu JT, Du BY, Fan ZQ (2016) Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block. Soft Matter 12:67–76

    Article  CAS  Google Scholar 

  42. Grzelakowski M, Kitatokarczyk K (2016) Terminal groups control self-assembly of amphiphilic block copolymers in solution. Nanoscale 8:6674–6683

    Article  CAS  Google Scholar 

  43. Voit B (2000) New developments in hyperbranched polymers. J Polym Sci A Polym Chem 38:2505–2525

    Article  CAS  Google Scholar 

  44. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    Article  CAS  Google Scholar 

  45. Zhou Y, Yan D (2009) Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem Commun 10:1172–1188

    Article  Google Scholar 

  46. Peleshanko S, Tsukruk VV (2008) The architectures and surface behavior of highly branched molecules. Prog Polym Sci 33:523–580

    Article  CAS  Google Scholar 

  47. Cheng H, Yuan X, Sun X, Li K, Zhou Y, Yan D (2010) Effect of degree of branching on the self-assembly of amphiphilic hyperbranched multiarm copolymers. Macromolecules 43:1143–1147

    Article  CAS  Google Scholar 

  48. Hölter D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polym 48:30–35

    Article  Google Scholar 

  49. Frey H (1997) Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: scope and limitations. Acta Polym 48:298–309

    Article  Google Scholar 

  50. Stiriba SE, Kautz H, Frey H (2002) Hyperbranched molecular nanocapsules: comparison of the hyperbranched architecture with the perfect linear analogue. J Am Chem Soc 124:9698–9699

    Article  CAS  Google Scholar 

  51. Müller AHE, Yan D, Wulkow M (1997) Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules 30:7015–7023

    Article  Google Scholar 

  52. Mai Y, Zhou Y, Yan D, Hou J (2005) Quantitative dependence of crystallinity on degree of branching for hyperbranched poly [3-ethyl-3-(hydroxymethyl) oxetane]. New J Phys 7:42

    Article  Google Scholar 

  53. Gong W, Mai Y, Zhou Y, Qi N, Wang B, Yan D (2005) Effect of the degree of branching on atomic-scale free volume in hyperbranched poly [3-ethyl-3-(hydroxymethyl) oxetane]. A positron study. Macromolecules 38:9644–9649

    Article  CAS  Google Scholar 

  54. Liu Z, Yang F, Wu X, Zhang W, Zhu G, Li W, Gong D, Mu J (2016) Polyethylene-block-hyperbranched polyglycerol diblock copolymers: synthesis, thermal property and compatibilization. J Polym Res 23:143

    Article  Google Scholar 

  55. Mu JS, Liu JY, Liu SR, Li YS (2009) Copolymerizations of ethylene with α-olefin-ω-ols by highly active vanadium(III) catalysts bearing (N,O) bidentate chelated ligands. Polymer 50:5059–5064

    Article  CAS  Google Scholar 

  56. Sunder A, Hanselmann R, Frey H, Mulhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  57. Radke W, Litvinenko G, Muller AHE (1998) Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules 31:239–248

    Article  CAS  Google Scholar 

  58. Roy RK, Gowd EB, Ramakrishnan S (2012) Periodically grafted amphiphilic copolymers: nonionic analogues of ionenes. Macromolecules 45:3063–3069

    Article  CAS  Google Scholar 

  59. Chanda S, Ramakrishnan S (2016) Controlling interlamellar spacing in periodically grafted amphiphilic copolymers. Macromolecules 49:3254–3263

    Article  CAS  Google Scholar 

  60. Matsushita Y, Noro A, Iinuma M, Suzuki J, Ohtani H, Takano A (2003) Effect of composition distribution on microphase-separated structure from diblock copolymers. Macromolecules 36:8074–8077

    Article  CAS  Google Scholar 

  61. Burns AB, Register RA (2017) Large, reversible, and coherent domain spacing dilation driven by crystallization under soft lamellar confinement. Macromolecules 50:8106–8116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the Project of Natural Science Foundation of China (Nos. 21204041, 21604044), the Project of Natural Science Foundation of Zhejiang Province (LY18B040001), K. C. Wong Education Foundation, and K. C. Wong Magna Fund, Hong Kong, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Mu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, L., Qian, J., Zhu, G. et al. Self-assembly of linear-hyperbranched hybrid block polymers: crystallization-driven or solvent-driven?. J Polym Res 26, 121 (2019). https://doi.org/10.1007/s10965-019-1786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1786-5

Keywords

Navigation