Skip to main content
Log in

How the modification of the hyperbranched terminals affects the solution self-assembly of linear-block-hyperbranched copolymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this article, we reported the solution self-assembly of a series of amphiphilic linear-block-hyperbranched copolymers, which are composed of linear polyethylene (PE) blocks and hyperbranched poly(glycidol) (hbPG) blocks with 100% hydroxyl terminals (PE157-b-hbPG26-OH27, E1), partially acetyl terminals (PE157-b-hbPG26-acetyl≈50%, E2) and fully acetyl terminals (PE157-b-hbPG26-acetyl≈100%, E3) respectively. In the selective solvent of PE blocks, the epitaxial growth characteristics of crystalline PE conferred the ability of block copolymer (E1) to generate perfect two-dimensional lamellar structure. Fully hydroxyl acylation will reinforce the repulsion of the lamellar surface and interfere with the epitaxial growth of lamellae, forming an imperfect lamellar structure (E3). For E2, the hydrogen bonds formed between hydroxyl and carbonyl oxygen prevented the unimers from approaching the growth interface of lamellae, forming a disordered lamellar structure. In the selective solvent for hbPG block, the solvent induced the copolymers to self-assemble into spherical (E1 and E2) and wormlike (E3) primary micelles. Furthermore, the spherical and wormlike primary micelles were assembled at higher level into more stable spherical (E1), rod-shaped (E2) and spindle-shaped (E3) aggregates. Mechanisms of terminal acylation on the morphology of self-assembly in block-selective solutions were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4

Similar content being viewed by others

References

  1. Schacher FH, Rupar PA, Manners I (2012) Functional Block Copolymers: Nanostructured Materials with Emerging Applications. Angew Chem Int Ed 51(32):7898–7921

    Article  CAS  Google Scholar 

  2. Li F, Yang LL, Xu G, Hydrothermal J (2013) Self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries. Alloy Compd 577:663–668

    Article  CAS  Google Scholar 

  3. O’Reilly RK (2007) Spherical polymer micelles: nanosized reaction vessels? Phil Trans R Soc A 365(1861):2863–2878

    Article  CAS  PubMed  Google Scholar 

  4. Savic R, Luo LB, Eisenberg A, Maysinger D (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618

    Article  CAS  PubMed  Google Scholar 

  5. Hamley IW (2003) Nanotechnology with soft materials. Angew Chem Int Ed 42(15):1692–1712

    Article  CAS  Google Scholar 

  6. Simonyan A, Gitsov I (2008) Linear-dendritic supramolecular complexes as nanoscale reaction vessels for “green” chemistry. Diels− Alder reactions between fullerene C60 and polycyclic aromatic hydrocarbons in aqueous medium. Langmuir 24(20):11431–11441

    Article  CAS  PubMed  Google Scholar 

  7. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112(3):630–648

    Article  CAS  PubMed  Google Scholar 

  8. Gillies ER, Fréchet JMJ (2002) Designing macromolecules for therapeutic applications: polyester dendrimer poly (ethylene oxide)“bow-tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc 124(47):14137–14146

    Article  CAS  PubMed  Google Scholar 

  9. Lim Y, Moon KS, Lee M (2008) Rod–coil block molecules: their aqueous self-assembly and biomaterials applications. J Mater Chem 18(25):2909–2918

    Article  CAS  Google Scholar 

  10. Miao Y, Niu X, Wu A, Wu M, Jin S (2021) Metallic oxide-induced self-assembly of block copolymers to form polymeric hybrid micelles with tunable stability for tumor microenvironment-responsive drug delivery. ACS Appl Mater Interfaces 13(28):32753–32762

    Article  CAS  PubMed  Google Scholar 

  11. Lopresti C, Lomas H, Massignani M, Smart T, Battaglia G (2009) Polymersomes:nature inspired nanometer sized compartments. J Mater Chem 19(22):3576–3590

    Article  CAS  Google Scholar 

  12. Xu JT, Fairclough JPA, Mai SM, Ryan AJ (2003) The effect of architecture on the morphology and crystallization of oxyethylene/oxybutylene block copolymers from micelles in n-hexane. J Mater Chem 13(11):2740–2748

    Article  CAS  Google Scholar 

  13. Besenius P (2017) Controlling supramolecular polymerization through multicomponent self-assembly. Sci Part A Polym Chem 55(1):34–78

    Article  CAS  Google Scholar 

  14. Terreau O, Bartels C, Eisenberg A (2004) Effect of poly (acrylic acid) block length distribution on polystyrene-b-poly (acrylic acid) block copolymer aggregates in solution. 2. A partial phase diagram. Langmuir 20(3):637–645

    Article  CAS  PubMed  Google Scholar 

  15. Hailes RLN, Oliver AM, Gwyther J, Manners I, Whittell GR (2016) Polyferrocenylsilanes: synthesis, properties, and applications. Chem Soc Rev 45(19):5358–5407

    Article  CAS  PubMed  Google Scholar 

  16. Azzam T, Eisenberg A (2006) Control of vesicular morphologies through hydrophobic block length. Angew Chem Int Ed 45(44):7443–7447

    Article  Google Scholar 

  17. Legros C, Pauw-Gillet MCD, Tam KC, Taton D (2015) Crystallisation-driven self-assembly of poly (2-isopropyl-2-oxazoline)-block-poly (2-methyl-2-oxazoline) above the LCST. Soft Matter 11(17):3354–3359

    Article  CAS  PubMed  Google Scholar 

  18. Sun L, Petzetakis N, Barry AP, O’Reilly RK, Dove AP (2013) Tuning the size of cylindrical micelles from poly (L-lactide)-b-poly (acrylic acid) diblock copolymers based on crystallization-driven self-assembly. Macromolecules 46(22):9074–9082

    Article  CAS  Google Scholar 

  19. Gädt T, Sleong N, Cambridge G, Winnik MA, Manners I (2009) Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat Mater 8(2):144–150

    Article  CAS  PubMed  Google Scholar 

  20. Lotz B, Kovacs AJ, Bassett GA, Keller A (1966) Properties of copolymers composed of one poly-ethylene-oxide and one polystyrene block. Soft Matter 209(2):115–128

    CAS  Google Scholar 

  21. Qiu H, Gao Y, Du VA, Harniman R, Winnik MA, Manners I (2015) Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. J Am Chem Soc 137(6):2375–2385

    Article  CAS  PubMed  Google Scholar 

  22. Nakagawa S, Kadena K, Ishizone T (2012) Crystallization behavior and crystal orientation of poly (ε-caprolactone) homopolymers confined in nanocylinders: Effects of nanocylinder dimension. Macromolecules 45(4):1892–1900

    Article  CAS  Google Scholar 

  23. Lin EK, Gast AP (1966) Semicrystalline diblock copolymer platelets in dilute solution. Macromolecules 29(12):4432–4441

    Article  Google Scholar 

  24. Müller AJ, Balsamo V, Arnal ML (2005) Nucleation and crystallization in diblock and triblock copolymers. Adv Polym Sci 190:1–63

    Article  CAS  Google Scholar 

  25. Schmarsow RN, Ceolín M, Zucchi IA, Schroeder WF (2019) Core-crystalline nanoribbons of controlled length via diffusion-limited colloid aggregation. Soft Matter 15(23):4751–4760

    Article  CAS  PubMed  Google Scholar 

  26. Fan B, Liu L, Li JH, Xu JT (2016) Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly (tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block. Soft Matter 12(1):67–76

    Article  CAS  PubMed  Google Scholar 

  27. Cheng SW, Hu Y, Wu XH, Mu JS (2021) Hierarchical Self-Assembly of Polyethylene Midblock Copolymers in Hot Steam: Key Role of Crystalline and Topological Structure. Macromol Chem Phys 7:2000419

    Article  CAS  Google Scholar 

  28. Cambridge G, Guerin G, Manners I, Winnik MA (2021) Fiberlike micelles formed by living epitaxial growth from blends of polyferrocenylsilane block copolymers. Macromol Rapid Commun 31(9–10):934–938

    Google Scholar 

  29. Kynaston EL, Gould OEC, Gwyther J, Whittell GR, Manners I, Winnik MA (2015) Fiber-Like Micelles from the Crystallization-Driven Self-Assembly of Poly (3-heptylselenophene)-block-Polystyrene. Macromol Chem Phys 216(6):685–695

    Article  CAS  Google Scholar 

  30. Gilroy JB, Lunn DJ, Patra SK, Manners I, Winnik MA (2015) Fiber-like micelles via the crystallization-driven solution self-assembly of poly (3-hexylthiophene)-block-poly (methyl methacrylate) copolymers. Macromolecules 45(14):5806–5815

    Article  CAS  Google Scholar 

  31. Mihut AM, Drechsler M, Möller M, Ballauff M (2010) Sphere-to-rod transition of micelles formed by the semicrystalline polybutadiene-block-poly (ethylene oxide) block copolymer in a selective solvent. Macromol Rapid Commun 31(5):449–453

    Article  CAS  PubMed  Google Scholar 

  32. Sun L, Barry AP, Kirby N, Schiller TL, Sanchez AM, Dyson MA, Wilson NR, O’Reilly RK, Dove AP (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5(1):1–8

    Google Scholar 

  33. Cheng H, Wang S, Yang J, Zhou Y, Yan D (2009) Synthesis and self-assembly of amphiphilic hyperbranched polyglycerols modified with palmitoyl chloride. J Colloid Interface Sci 337(1):278–284

    Article  CAS  PubMed  Google Scholar 

  34. Deng Z, Liu S (2020) Emerging trends in solution self-assembly of block copolymers. Polymer 207:122914

    Article  CAS  Google Scholar 

  35. Lu Y, Lin J, Wang L, Zhang L, Cai C (2020) Self-assembly of copolymer micelles:higher-level assembly for constructing hierarchical structure. Chem Rev 120(9):4111–4140

    Article  CAS  PubMed  Google Scholar 

  36. Loo YL, Register RA, Ryan AJ (2000) Polymer crystallization in 25-nm spheres. Phys Rev Lett 84(18):4120

    Article  CAS  PubMed  Google Scholar 

  37. Droghetti H, Pagonabarraga I, Carbone P, Asinari P, Marchisio D (2018) Dissipative particle dynamics simulations of tri-block co-polymer and water: Phase diagram validation and microstructure identification. J Chem Phys 149(18):184903

    Article  CAS  PubMed  Google Scholar 

  38. Wang XY, Wang RY, Fan B, Du BY, Fan ZQ (2018) Specific disassembly of lamellar crystalline micelles of block copolymer into cylinders. Macromolecules 51(5):2138–2144

    Article  CAS  Google Scholar 

  39. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29(3):183–275

    Article  CAS  Google Scholar 

  40. Zhou Y, Yan D (2009) Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions:progress, characteristics and perspectives. Chem Commun 10:1172–1188

    Article  CAS  Google Scholar 

  41. Voit B (2000) New developments in hyperbranched polymers. J Polym Sci Part A: Polym Chem 38(14):2505–2525

    Article  CAS  Google Scholar 

  42. Grzelakowski M, Tokarczyk KK (2016) Terminal groups control self-assembly of amphiphilic block copolymers in solution. Nanoscale 8(12):6674–6683

    Article  CAS  PubMed  Google Scholar 

  43. Zhu J, Yu H, Jiang W (2005) Morphological transition of aggregates from ABA amphiphilic triblock copolymer induced by hydrogen bonding. Macromolecules 38(17):7492–7501

    Article  CAS  Google Scholar 

  44. Li X, Gao Y, Harniman R, Manners I, Winnik MA (2016) Hierarchical assembly of cylindrical block comicelles mediated by spatially confined hydrogen-bonding interactions. J Am Chem Soc 138(39):12902–12912

    Article  CAS  PubMed  Google Scholar 

  45. Yang JX, Fan B, Li JH, Xu JT, Fan ZQ (2016) Hydrogen-bonding-mediated fragmentation and reversible self-assembly of crystalline micelles of block copolymer. Macromolecules 49(1):367–372

    Article  CAS  Google Scholar 

  46. Zhou Y, Huang W, Liu J, Yan D, Zhu X (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22(41):4567–4590

    Article  CAS  PubMed  Google Scholar 

  47. Xiao W, An Z (2019) New Insights into RAFT Dispersion Polymerization-Induced Self-Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces. Macromol Rapid Commun 40(2):1800325

    Article  CAS  Google Scholar 

  48. Barrio JD, Oriol L, Sanchez C, Serrano JL, Cicco AD, Keller P (2010) Self-assembly of linear− dendritic diblock copolymers: from nanofibers to polymersomes. J Am Chem Soc 132(11):3762–3769

    Article  CAS  PubMed  Google Scholar 

  49. Yan D, Zhou Y, Hou J (2004) Supramolecular self-assembly of macroscopic tubes. Science 303(5654):65–67

    Article  CAS  PubMed  Google Scholar 

  50. Liu X, Gitsov I (2019) Nonionic amphiphilic linear dendritic block copolymers. solvent-induced self-Assembly and morphology tuning. Macromolecules 52(15):5563–5573

    Article  CAS  Google Scholar 

  51. Liu ZS, Yang F, Wu XH, Li W, Gong DR, Mu JS (2016) Polyethylene-block-hyperbranched polyglycerol diblock copolymers: synthesis, thermal property and compatibilization. J Polym Res 23(8):1–9

    Google Scholar 

  52. Ding LF, Qian JY, Zhu GJ, Mu JS (2019) Self-assembly of linear-hyperbranched hybrid block polymers: crystallization-driven or solvent-driven? J Polym Res 26(5):1–8

    Article  CAS  Google Scholar 

  53. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28(8):1223–1270

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotech- nology of the Ministry of Education, Ningbo University provides assistance with testing equipments.

Funding

The project of the Natural Science Foundation of Ningbo (2019A610149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Mu.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13310 KB)

Supplementary file2 (DOCX 119 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Mu, J. How the modification of the hyperbranched terminals affects the solution self-assembly of linear-block-hyperbranched copolymers. J Polym Res 29, 229 (2022). https://doi.org/10.1007/s10965-022-03088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03088-1

Keywords

Navigation