Skip to main content
Log in

Polyethylene-block-hyperbranched polyglycerol diblock copolymers: synthesis, thermal property and compatibilization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The linear-b-hyperbranched copolymers (LHBCs) consisting of linear polyethylene (PE) block and hyperbranched polyglycerol (hbPG) segment were synthesized with a sequential method starting with V(III)-catalyzed coordination polymerization and followed by ring-opening multibranching polymerization (ROMBP). The hydroxyl groups in hbPG block are further modified to benzoyl groups to improve the solubility. Ultimately, the structures and thermal properties of LHBCs were clearly characterized by 1H/13C NMR, GPC, TGA and DSC. The SEM images show that the LHBCs are effective compatibilizers in LLDPE/PCL blends. This paper represents the first case of generation of LHBCs combining hbPG with nonpolar and crystalline polyethylene block instead of polar and/or noncrystalline linear blocks. As a result, the crystallinity of linear polyethylene can be combined with low viscosity and a large number of terminal functional groups of hbPG.

The polyethylene-b-hyperbranched polyglycerol copolymers (PE-b-hbPG) were synthesized and characterized. The thermal and crystallization property of polyethylene can be combined with low viscosity and a large number of terminals of hbPG block. The SEM images showed that the compatibilization was determined by the hydrogen bonds between hbPG and PCL matrix, which was obviously different from the traditional compatibilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Wurm F, Frey H (2011) Prog Polym Sci 36:1–52

    Article  CAS  Google Scholar 

  2. Gitsov I (2008) J Polym Sci A Polym Chem 46:5295–5314

    Article  CAS  Google Scholar 

  3. Hadjichristidis N, Roovers JEL (1974) J Polym Sci B Polym Phys 12:2521–2533

    Article  CAS  Google Scholar 

  4. Lee M, Cho BK, Zin WC (2001) Chem Rev 101:3869–3892

    Article  CAS  Google Scholar 

  5. Gauthier M, Moller M (1991) Macromolecules 24:4548–4553

    Article  CAS  Google Scholar 

  6. Gauthier M (2007) J Polym Sci A Polym Chem 45:3803–3810

    Article  CAS  Google Scholar 

  7. Gao C, Yan DY (2004) Prog Polym Sci 29:183–257

    Article  CAS  Google Scholar 

  8. Astrus D, Boisselier E, Ornelas C (2010) Chem Rev 110:1857–1959

    Article  Google Scholar 

  9. Kim YH, Webster O (2002) J Macromol Sci C Polym Rev 42:55–89

    Article  Google Scholar 

  10. Sunder A, Hanselmann R, Frey H, Mülhaupt R (1999) Macromolecules 32:4240–4246

    Article  CAS  Google Scholar 

  11. Sunder A, Frey H, Mülhaupt R (2000) Macromol Symp 153:187–196

    Article  CAS  Google Scholar 

  12. Kautz H, Sunder A, Frey H (2001) Macromol Symp 163:67–74

    Article  CAS  Google Scholar 

  13. Wilms D, Wurm F, Nieberle J, Bohm P, Kemmer UJ, Frey H (2009) Macromolecules 42:3230–3236

    Article  CAS  Google Scholar 

  14. Wurm F, Nieberle, Frey H (2008) Macromolecules 41:1184–1188

    Article  CAS  Google Scholar 

  15. Wurm F, Schüle H, Frey H (2008) Macromolecules 41:9602–9611

    Article  CAS  Google Scholar 

  16. Wurm F, Klos J, Räder HJ, Frey H (2009) J Am Chem Soc 131:7954–7955

    Article  CAS  Google Scholar 

  17. Hanselmann R, Hölter D, Frey H (1998) Macromolecules 31:3790–3801

    Article  CAS  Google Scholar 

  18. Wurm F, Kemmer UJ, Frey H (2009) Polym Int 58:989–995

    Article  CAS  Google Scholar 

  19. Istratov V, Kautz H, Kim YK, Schubert R, Frey H (2003) Tetrahedron 59:4017–4024

    Article  CAS  Google Scholar 

  20. Marcos AG, Pusel TM, Thomann R, Frey H, et al. (2006) Macromolecules 39:971–977

    Article  CAS  Google Scholar 

  21. Barriau E, Marcos AG, Kautz H, Frey H (2005) Macromol Rapid Commun 26:862–867

    Article  CAS  Google Scholar 

  22. Rahm M, Westlund R, Eldsäter C, Malmstro E (2009) J Polym Sci A Polym Chem 47:6191–6200

    Article  CAS  Google Scholar 

  23. Creton C, Kramer EJ, Hui CY, Brown HR (1992) Macromolecules 25:3075–3088

    Article  CAS  Google Scholar 

  24. Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA (1996) Macromolecules 29:4728–4736

    Article  CAS  Google Scholar 

  25. Dai CA, Jandt KD, Iyengar DR, Slack NL, Dai KH, Kramer EJ (1997) Macromolecules 30:549–560

    Article  CAS  Google Scholar 

  26. Xu DB, Hui CY, Kramer EJ, Creton C (1991) Mech Mater 11:257–268

    Article  Google Scholar 

  27. Cigana P, Favis BD (1998) Polymer 39:3373–3378

    Article  CAS  Google Scholar 

  28. Hong BK, Jo WH (2000) Polymer 41:2069–2079

    Article  CAS  Google Scholar 

  29. Guo TY, Song MD, Hao GJ, Zhang BH (2001) Eur Polym J 37:241–246

    Article  CAS  Google Scholar 

  30. Macaúbas PHP, Demarquette NR (2001) Polymer 42:2543–2554

    Article  Google Scholar 

  31. Galloway JA, Jeon HK, Bell JR, Macosko CW (2005) Polymer 46:183–191

    Article  CAS  Google Scholar 

  32. Starý Z, Pemsel T, Baldrian J, Münstedt H (2012) Polymer 53:1881–1889

    Article  Google Scholar 

  33. Utsel S, Carlmark A, Pettersson T, Bergström M, Malmaström EE, Wagberg L (2012) Eur Polym J 48:1195–1204

    Article  CAS  Google Scholar 

  34. Chow WS, Bakar AA, Ishak ZAM, Kocsis JK, Ishiaku US (2005) Eur Polym J 41:687–696

    Article  CAS  Google Scholar 

  35. Hwu JM, Chang MJ, Lin JC, Cheng HY, Jiang GJ (2005) J Organomet Chem 690:6300–6308

    Article  CAS  Google Scholar 

  36. Zhang CL, Feng LF, Gu XP, Hoppe S, Hu GH (2007) Polymer 48:5940–5949

    Article  CAS  Google Scholar 

  37. Wang JJ, Li ZZ, Gu XP, Feng LF, Zhang CL, Hu GH (2012) Polymer 53:4448–4454

    Article  CAS  Google Scholar 

  38. Xu YW, Thurber CM, Lodge TP, Hillmyer MA (2012) Macromolecules 45:9604–9610

    Article  CAS  Google Scholar 

  39. Mu JS, Yang F, Liu ZS, Li YS (2014) Polym Int 63:2017–2022

    Article  CAS  Google Scholar 

  40. Mu JS, Liu JY, Liu SR, Li YS (2009) Polymer 50:5059–5064

    Article  CAS  Google Scholar 

  41. Mu JS, Yang F, Li W, Gong DR, Liu ZS, Chen ZR (2014) J Polym Sci A Polym Chem 52:2146–2154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for subsidy provided by the National Natural Science Foundation of China (Nos. 21204041), the Natural Science Foundation of Ningbo (2014 A610128), the Key Innovation Team of Zhejiang Province (2011R50001-12), K. C. Wong Education Foundation, and K. C. Wong Magna Fund, Hong Kong, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, F., Wu, X. et al. Polyethylene-block-hyperbranched polyglycerol diblock copolymers: synthesis, thermal property and compatibilization. J Polym Res 23, 143 (2016). https://doi.org/10.1007/s10965-016-1029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1029-y

Keywords

Navigation