Skip to main content
Log in

Preparation and characterization of poly(lactic acid)/recycled polypropylene blends with and without the coupling agent, n-(6-aminohexyl)aminomethyltriethoxysilane

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Blends of polylactide (PLA) and recycled polypropylene (rPP) were prepared by melt-processing using a corotating twin-screw extruder and subsequent pelletizing of the extrudates for injection molding. The PLA/rPP blends were characterized by Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), rheometer (MCR-102), scanning electron microscopy(SEM), tensile tests, and impact measurements. The results indicate that the PLA/rPP blend is immiscible and has a two-phase structure. TGA revealed enhancement of the thermal stability of the blends upon addition of rPP. The storage modulus, loss modulus, and complex viscosity of the blends increased with rPP concentration. Mechanical studies showed that introduction of rPP results in a decrease in tensile strength and modulus and enhancement of the impact strength of PLA in the blends. The effects of a silane coupling agent on the morphology and on the tensile and impact properties of the rPP blends of silane-modified PLA were also examined. SEM studies suggest that silane is an effective interfacial modifier. Thus, better interfacial adhesion was observed with silane-modified blends as compared with unmodified blends. Silane also improved the mechanical properties of the modified blends. The blends reached maximum tensile strength at 1.5 wt.% silane (relative to modified PLA content), and impact strength increased with increasing silane concentration. These results confirm the enhancing effect of silane on modified PLA/rPP blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the twenty-first century materials world. Prog Mater Sci 50(8):962–1079. doi:10.1016/j.pmatsci.2005.05.002

    Article  Google Scholar 

  2. Ojijo V, Sinha Ray S, Sadiku R (2012) Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate]. ACS Appl Mater Interfaces 4(12):6690–6701. doi:10.1021/am301842e

    Article  CAS  Google Scholar 

  3. He Y-S, Zeng J-B, Liu G-C, Li Q-T, Wang Y-Z (2014) Super-tough poly(l-lactide)/crosslinked polyurethane blends with tunable impact toughness. RSC Adv 4(25):12857–12866. doi:10.1039/C4RA00718B

    Article  CAS  Google Scholar 

  4. Lee T-W, Jeong YG (2014) Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes. Compos Sci Technol 103:78–84. doi:10.1016/j.compscitech.2014.08.019

    Article  CAS  Google Scholar 

  5. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914. doi:10.1016/j.polymdegradstab.2012.06.028

    Article  CAS  Google Scholar 

  6. Gupta AP, Kumar V (2007) New emerging trends in synthetic biodegradable polymers – Polylactide: a critique. Eur Polym J 43(10):4053–4074. doi:10.1016/j.eurpolymj.2007.06.045

    Article  CAS  Google Scholar 

  7. Bao R-Y, Jiang W-R, Liu Z-Y, Yang W, Xie B-H, Yang M-B (2015) Balanced strength and ductility improvement of in situ crosslinked polylactide/poly(ethylene terephthalate glycol) blends. RSC Adv 5(44):34821–34830. doi:10.1039/C5RA02575C

    Article  CAS  Google Scholar 

  8. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219. doi:10.1016/s0032-3861(01)00086-6

    Article  CAS  Google Scholar 

  9. Liu M-J, Chen S-C, Yang K-K, Wang Y-Z (2015) Biodegradable polylactide based materials with improved crystallinity, mechanical properties and rheological behaviour by introducing a long-chain branched copolymer. RSC Adv 5(52):42162–42173. doi:10.1039/C5RA04742K

    Article  CAS  Google Scholar 

  10. Ebadi-Dehaghani H, Khonakdar HA, Barikani M, Jafari SH (2015) Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites. Compos Part B 69:133–144. doi:10.1016/j.compositesb.2014.09.006

    Article  CAS  Google Scholar 

  11. Yao M (2011) Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Express Polym Lett 5(11):937–949. doi:10.3144/expresspolymlett.2011.92

    Article  CAS  Google Scholar 

  12. Lin S, Guo W, Chen C, Ma J, Wang B (2012) Mechanical properties and morphology of biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends compatibilized by transesterification. Mater Des 36:604–608. doi:10.1016/j.matdes.2011.11.036

    Article  CAS  Google Scholar 

  13. Kumar M, Mohanty S, Nayak SK, Rahail Parvaiz M (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour Technol 101(21):8406–8415. doi:10.1016/j.biortech.2010.05.075

    Article  CAS  Google Scholar 

  14. Sun Z, Zhang B, Bian X, Feng L, Zhang H, Duan R, Sun J, Pang X, Chen W, Chen X (2015) Synergistic effect of PLA-PBAT-PLA tri-block copolymers with two molecular weights as compatibilizers on the mechanical and rheological properties of PLA/PBAT blends. RSC Adv 5(90):73842–73849. doi:10.1039/C5RA11019J

    Article  CAS  Google Scholar 

  15. Bian Y, Han C, Han L, Lin H, Zhang H, Bian J, Dong L (2015) Correction: toughening mechanism behind intriguing stress-strain curves in tensile tests of highly enhanced compatibilization of biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. RSC Adv 5(44):34908–34909. doi:10.1039/C5RA90033F

    Article  CAS  Google Scholar 

  16. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable Polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7(1):199–207. doi:10.1021/bm050581q

    Article  Google Scholar 

  17. Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101. doi:10.1021/am3004522

    Article  CAS  Google Scholar 

  18. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci B Polym Phys 35(2):389–396. doi:10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E

    Article  CAS  Google Scholar 

  19. Ploypetchara N, Suppakul P, Atong D, Pechyen C (2014) Blend of polypropylene/poly(lactic acid) for medical packaging application: physicochemical, thermal, mechanical, and barrier properties. Energy Procedia 56:201–210. doi:10.1016/j.egypro.2014.07.150

    Article  CAS  Google Scholar 

  20. Jariyasakoolroj P, Chirachanchai S (2014) Silane modified starch for compatible reactive blend with poly(lactic acid). Carbohydr Polym 106:255–263. doi:10.1016/j.carbpol.2014.02.018

    Article  CAS  Google Scholar 

  21. Abdelwahab MA, Flynn A, Chiou BS, Imam S, Orts W, Chiellini E (2012) Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polym Degrad Stab 97(9):1822–1828. doi:10.1016/j.Polymdegradstab.2012.05.036

    Article  CAS  Google Scholar 

  22. Ebadi-Dehaghani H, Khonakdar HA, Barikani M, Jafari SH, Wagenknecht U, Heinrich G (2014) An investigation on compatibilization threshold in the interface of polypropylene/polylactic acid blends using rheological studies. J Vinyl Addit Technol. doi:10.1002/vnl.21424

    Google Scholar 

  23. Ares A, Bouza R, Pardo SG, Abad MJ, Barral L (2010) Rheological, mechanical and thermal behaviour of wood polymer composites based on recycled polypropylene. J Polym Environ 18(3):318–325. doi:10.1007/s10924-010-0208-x

    Article  CAS  Google Scholar 

  24. Wang K, Addiego F, Bahlouli N, Ahzi S, Rémond Y, Toniazzo V (2014) Impact response of recycled polypropylene-based composites under a wide range of temperature: effect of filler content and recycling. Compos Sci Technol 95:89–99. doi:10.1016/j.compscitech.2014.02.014

    Article  CAS  Google Scholar 

  25. Madi NK (2013) Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater Des 46:435–441. doi:10.1016/j.matdes.2012.10.004

    Article  CAS  Google Scholar 

  26. Bonelli CMC, Martins AF, Mano EB, Beatty CL (2001) Effect of recycled polypropylene on polypropylene/high-density polyethylene blends. J Appl Polym Sci 80(8):1305–1311. doi:10.1002/app.1217

    Article  CAS  Google Scholar 

  27. Kang H, Lu X, Xu Y (2015) Properties of immiscible and ethylene-butyl acrylate-glycidyl methacrylate terpolymer compatibilized poly (lactic acid) and polypropylene blends. Polym Test 43:173–181. doi:10.1016/j.polymertesting.2015.03.012

    Article  CAS  Google Scholar 

  28. Kim TW, Lee SY, Chun SJ, Doh GH, Paik KH (2011) Effect of silane coupling on the fundamental properties of wood flour reinforced polypropylene composites. J Compos Mater 45(15):1595–1605. doi:10.1177/0021998310385589

    Article  CAS  Google Scholar 

  29. Chen X, Zhou L, Pan X, Hu J, Hu Y, Wei S (2016) Effect of different compatibilizers on the mechanical and thermal properties of starch/polypropylene blends. J Appl Polym Sci 133 (17):n/a-n/a. doi:10.1002/app.43332

  30. Oyman ZO, Tincer T (2003) Melt blending of poly(ethylene terephthalate) with polypropylene in the presence of silane coupling agent. J Appl Polym Sci 89(4):1039–1048. doi:10.1002/ap.12228

    Article  CAS  Google Scholar 

  31. Altun Y, Dogan M, Bayramli E (2013) Effect of alkaline treatment and pre-impregnation on mechanical and water Absorbtion properties of pine wood flour containing poly (lactic acid) based green-composites. J Polym Environ 21(3):850–856. doi:10.1007/s10924-012-0563-x

    Article  CAS  Google Scholar 

  32. Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49(6):1215–1233. doi:10.1016/j.eurpolymj.2013.01.019

    Article  CAS  Google Scholar 

  33. Sis ALM, Ibrahim NA, Yunus WMZW (2013) Effect of (3-aminopropyl)trimethoxysilane on mechanical properties of PLA/PBAT blend reinforced kenaf fiber. Iran Polym J 22(2):101–108. doi:10.1007/s13726-012-0108-0

    Article  CAS  Google Scholar 

  34. Rachini A, Mougin G, Delalande S, Charmeau JY, Barrès C, Fleury E (2012) Hemp fibers/polypropylene composites by reactive compounding: improvement of physical properties promoted by selective coupling chemistry. Polym Degrad Stab 97(10):1988–1995. doi:10.1016/j.polymdegradstab.2012.03.034

    Article  CAS  Google Scholar 

  35. Lv SS, Tan HY, JY G, Zhang YH (2015) Silane modified wood flour blended with poly(lactic acid) and its effects on composite performance. Bioresources 10(3):5426–5439

    CAS  Google Scholar 

  36. Wang YL, Qi RR, Xiong C, Huang M (2011) Effects of coupling agent and interfacial modifiers on mechanical properties of poly(lactic acid) and wood flour Biocomposites. Iran Polym J 20(4):281–294

    Google Scholar 

  37. Zhang K, Nagarajan V, Misra M, Mohanty AK (2014) Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interfaces 6(15):12436–12448. doi:10.1021/am502337u

    Article  CAS  Google Scholar 

  38. Qiu J, Guan J, Wang H, Zhu S, Cao X, Ye QL, Li Y (2014) Enhanced crystallization rate of poly(L-lactic acid) (PLLA) by polyoxymethylene (POM) fragment crystals in the PLLA/POM blends with a small amount of POM. J Phys Chem B 118(25):7167–7176. doi:10.1021/jp412519g

    Article  CAS  Google Scholar 

  39. Choudhary P, Mohanty S, Nayak SK, Unnikrishnan L (2011) Poly(L-lactide)/polypropylene blends: evaluation of mechanical, thermal, and morphological characteristics. J Appl Polym Sci 121(6):3223–3237. doi:10.1002/app.33866

    Article  CAS  Google Scholar 

  40. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A Appl Sci Manuf 40(4):404–412. doi:10.1016/j.compositesa.2009.01.002

    Article  Google Scholar 

  41. Yuan H, Liu ZY, Ren J (2009) Preparation, characterization, and foaming behavior of poly(lactic acid)/poly(butylene adipate-co-butylene terephthalate) blend. Polym Eng Sci 49(5):1004–1012. doi:10.1002/pen.21287

    Article  CAS  Google Scholar 

  42. Garlotta D (2001) A literature review of poly(lactic acid). Journal of polymers and the. Environment 9(2):63–84. doi:10.1023/A:1020200822435

    CAS  Google Scholar 

  43. Kang H, Qiao B, Wang R, Wang Z, Zhang L, Ma J, Coates P (2013) Employing a novel bioelastomer to toughen polylactide. Polymer 54(9):2450–2458. doi:10.1016/j.polymer.2013.02.053

    Article  CAS  Google Scholar 

  44. Fang H, Jiang F, Wu Q, Ding Y, Wang Z (2014) Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS Appl Mater Interfaces 6(16):13552–13563. doi:10.1021/am502735q

    Article  CAS  Google Scholar 

  45. Xu Y, Loi J, Delgado P, Topolkaraev V, McEneany RJ, Macosko CW, Hillmyer MA (2015) Reactive Compatibilization of Polylactide/polypropylene blends. Ind Eng Chem Res 54(23):6108–6114. doi:10.1021/acs.iecr.5b00882

    Article  CAS  Google Scholar 

  46. Naffakh M, Díez-Pascual AM, Marco C (2016) Polymer blend nanocomposites based on poly(l-lactic acid), polypropylene and WS2inorganic nanotubes. RSC Adv 6(46):40033–40044. doi:10.1039/c6ra05803e

    Article  CAS  Google Scholar 

  47. Inoya H, Wei Leong Y, Klinklai W, Takai Y, Hamada H (2012) Compatibilization of recycled poly(ethylene terephthalate) and polypropylene blends: effect of compatibilization on blend toughness, dispersion of minor phase, and thermal stability. J Appl Polym Sci 124(6):5260–5269. doi:10.1002/app.34385

    CAS  Google Scholar 

  48. Zeng J-B, Li K-A, A-K D (2015) Compatibilization strategies in poly(lactic acid)-based blends. RSC Adv 5(41):32546–32565. doi:10.1039/c5ra01655j

    Article  CAS  Google Scholar 

  49. Yoo TW, Yoon HG, Choi SJ, Kim MS, Kim YH, Kim WN (2010) Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends. Macromol Res 18(6):583–588. doi:10.1007/s13233-010-0613-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Ministry of Science and Technology (MOST) 104-2623-E-011-004-IT and the facilities supports from National Taiwan University of Science and Technology (NTUST) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiunn-Yih Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abay, A.K., Gebeyehu, M.B., Lin, H.K. et al. Preparation and characterization of poly(lactic acid)/recycled polypropylene blends with and without the coupling agent, n-(6-aminohexyl)aminomethyltriethoxysilane. J Polym Res 23, 198 (2016). https://doi.org/10.1007/s10965-016-1091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1091-5

Keywords

Navigation