Skip to main content
Log in

Poly(methyl methacrylate) based nanocomposite gel polymer electrolytes with enhanced safety and performance

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The study presents preparation of poly methyl methacrylate (PMMA) based nanocomposite gel polymer electrolytes consisting of, salt lithium perchlorate (LiClO4), plasticizer PC/DEC and different proportions of SiO2 nanofiber by solution casting process. The effect of the composition of the electrolytes on their ionic, mechanical and thermal characteristics was investigated. Morphology of the nanocomposite electrolyte films has been observed by scanning and transmission electron microscopes. Interactions among the constituents of the composite and structural changes of the base polymer were investigated by Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. The maximum conductivity i.e. 10−3 Scm−1 at room temperature is obtained with the electrolyte composition of 0.6(PMMA)-0.15(PC + DEC)-0.1LiClO4 (wt%) containing 10 wt% SiO2 nanofiber and the temperature dependent conductivity data of the electrolyte follows Vogel-Tamman-Fulcher (VTF) behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  2. Zhao XG, En Mei J, Ju-Young P, Hal-Bon G (2014) Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells. Comp Sc Tech 103:100–105

    Article  CAS  Google Scholar 

  3. Kim HS, Periasamy P (2005) Moon SI. Electrochemical properties of the Li-ion polymer batteries with P(VdF-co-HFP)-based gel polymer electrolyte. J Power Sources 141:293–297

    Article  CAS  Google Scholar 

  4. Gray FM (1991) Solid polymer electrolytes–fundamentals and technological applications. Wiley VCH, New York

    Google Scholar 

  5. Scrosati B (1993) Applications of electroactive polymers. Springer

  6. Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry, Cambridge

  7. MacCallum JR (1987) Vincent CA. Polymer electrolytes reviews–I. Elsevier, London

    Google Scholar 

  8. Hwang YJ, Nahm KS, Kumar TP, Stephan AM (2008) Poly(vinylidene fluoride-hexafluoropropylene)-based membranes for lithium batteries. J Membr Sc 310:349–355

    Article  CAS  Google Scholar 

  9. Muniyandi N, Kalaiselvi N, Periyasamy P, Thirunakaran R, Babu BR, Gopukumar S, Renganathan NG, Raghavan M (2001) Optimisation of PVdF-based polymer electrolytes. J Power Sources 96:14–19

    Article  CAS  Google Scholar 

  10. Wiesner MR, Bottero JY (2007) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw-Hill, New York

  11. Walls H, Zhou J, Yerian J, Fedkiw P, Khan SA, Stowe MK, Baker GL (2000) Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources 89:156–162

    Article  CAS  Google Scholar 

  12. Rajendra S, Mahendran O, Kannan R (2002) Ionic conductivity in composite solid polymer electrolytes based on PMMA. J Phys Chem Solids 63:303–307

    Article  Google Scholar 

  13. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B (2000) Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta 45:1481–1490

    Article  CAS  Google Scholar 

  14. Ahmad S, Bohidar HB, Ahmad S, Agnihotry SA (2006) Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes. Polymer 47:3583–3590

    Article  CAS  Google Scholar 

  15. Dissanayake MAKL, Jayathilake PARD, Bokalawala RSP, Albinsson I, Mellander BE (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9 LiCF3SO3:Al2O3 composite polymer electrolyte. J Power Sources 119:409–414

    Article  Google Scholar 

  16. Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288

    Article  CAS  Google Scholar 

  17. Wieczorek W, Steven JR, Florjanczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach Solid State Ion 85:67–72

    Article  CAS  Google Scholar 

  18. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ionics 104:267–276

    Article  CAS  Google Scholar 

  19. Chandra S, Sekhon SS, Arora N (2000) PMMA based protonic polymer gel electrolytes. Ionics 6:112–118

    Article  CAS  Google Scholar 

  20. Liang YH, Wang CC, Chena CY (2005) The conductivity and characterization of the plasticized polymer electrolyte based on the P(AN-co-GMA-IDA) copolymer with chelating group. J Power Sources 148:55–65

    Article  CAS  Google Scholar 

  21. Morrow B, McFarlan A (1992) Surface vibrational modes of silanol groups on silica. J Phys Chem 96:1395–1400

    Article  CAS  Google Scholar 

  22. Ahmad S, Saxena TK, Agnihotry SA (2006) The effect of nanosized TiO2 addition on poly(methylmethacrylate) based polymer electrolytes. J Power Sources 159:205–209

    Article  CAS  Google Scholar 

  23. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568

    Article  CAS  Google Scholar 

  24. Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ionics 156:393–399

    Article  CAS  Google Scholar 

  25. Wen Z, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O (2000) Characterization of composite electrolytes based on a hyperbranched polymer. J Power Sources 90:20–26

    Article  CAS  Google Scholar 

  26. Scrosati B, Croce F (1993) Composite polymer ionics: advanced electrolyte materials for thin-film batteries. Poly Adv Tech 4:198–204

    Article  CAS  Google Scholar 

  27. Swierczynski D, Zalewska A, Wieczorek W (2001) Composite polymeric electrolytes from the PEODME − LiClO4 − SiO2 System. Chem Mater 13:1560–1564

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (RS) acknowledges the financial support received from the Ministry of Human Resource Development (MHRD), Government of India for carrying out this piece of research at Indian Institute of Technology Roorkee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sil, A. & Ray, S. Poly(methyl methacrylate) based nanocomposite gel polymer electrolytes with enhanced safety and performance. J Polym Res 23, 194 (2016). https://doi.org/10.1007/s10965-016-1049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-1049-7

Keywords

Navigation