Skip to main content
Log in

The effect of titanium dioxide nano-filler on the conductivity, morphology and thermal stability of poly(methyl methacrylate)—poly(styrene-co-acrylonitrile) based composite solid polymer electrolytes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The composite solid polymer electrolyte (CSPE) samples, comprising of poly(methylmethacrylate) (PMMA)/poly(styrene-co-acrylonitrile) (SAN)/ethylene carbonate (EC)/propylene carbonate (PC)/lithium trifluoromethanesulfonate (LiCF3SO3)/anatase-TiO2 as nano-filler (0, 5, 6, 7, 8 and 9 wt% for samples T0, T1, T2, T3, T4 and T5 respectively) were prepared by solution casting technique. Fourier transform infrared (FT-IR) spectral studies indicate the interaction of PMMA and plasticizers (EC, PC) with Lithium ion and nano-filler TiO2 in samples. From AC impedance studies ionic conductivity, dielectric constant increase with increase in the concentration of nano-filler TiO2 up to 9 wt%. The sample T5 shows lowest activation energy (Ea) of 0.14 eV, very short relaxation time (τ) of 1.49 × 10−7 s and exhibits maximum ionic conductivity of 1.05 × 10−4 S cm−1 at room temperature. The conductivity-temperature dependence studies showed that the conductivity of all samples depict Arrhenius behaviour suggesting ion-hopping mechanism. Dielectric studies reveal ion conducting nature of CSPE samples. Thermogravimetric analysis indicate the thermal stability of CSPE sample T5 up to 333 °C with maximum degradation at 388 °C. DSC studies reveal absence of glass transition temperature (Tg) of atactic component of PMMA in CSPE sample T5 indicating amorphous nature. X-ray diffraction patterns shows shift in the position of peaks confirming the complex formation of the PMMA-SAN-EC-PC-LiCF3SO3-TiO2 system. SEM analysis indicates that the presence of lithium salt and filler TiO2 on polymer host does not lead to heterogenous polymer blend thus retaining its amorphous nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.M. Stephan, Eur. Polym. J. 42, 21–42 (2006)

    Google Scholar 

  2. G.B. Appetecchi, B. Scrosati, Electrochim. Acta 39, 2187–2194 (1994)

    Google Scholar 

  3. E. Quartarone, P. Mustarelli, Chem. Soc. Rev. 40, 2525–2540 (2011)

    CAS  Google Scholar 

  4. S. Ahmad, S. Ahmad, S.A. Agnihotry, Ionics 9, 439–449 (2003)

    CAS  Google Scholar 

  5. J. Adebahr, N. Byrne, M. Forsyth, D.R. MacFarlone, P. Jacobsson, Electrochim. Acta 48, 2099–2103 (2003)

    CAS  Google Scholar 

  6. H.M. Xiong, J.S. Chen, D.M. Li, J. Mater. Chem. 13, 1994–1998 (2003)

    CAS  Google Scholar 

  7. F. Croce, S. Saccheti, B. Scrosati, J. Power Sources 161, 560–564 (2006)

    CAS  Google Scholar 

  8. J.E. Weston, B.C.H. Steele, Solid State Ionics 71, 75–79 (1982)

    Google Scholar 

  9. S.K. Hyung, S.K. Kyong, C. Won-II, W.C. Byung, W.R. Hee, J. Power Sources 124, 221–224 (2003)

    Google Scholar 

  10. J. Srun, W.K. Dae, D.L. Sang, C. Minserk, Q.N. Dinh, W.C. Byung, S.K. Hoon, Bull. Korean Chem. Soc. 30, 2355–2361 (2009)

    Google Scholar 

  11. G.N. Kumaraswamy, C. Ranganathaiah, M.V. Deepa Urs, H.B. Ravikumar, Eur. Polym. J. 42, 2655–2666 (2006)

    CAS  Google Scholar 

  12. D. Miao, G. Jianhua, Z. Qiang, Polymer 45, 6725–6730 (2004)

    Google Scholar 

  13. S. Ramesh, K.C. Wong, Ionics 15, 249–254 (2009)

    CAS  Google Scholar 

  14. L. Othman, K.W. Chew, Z. Osman, Ionics 13, 337–342 (2007)

    CAS  Google Scholar 

  15. S. Ramesh, L.C. Wen, Ionics 16, 255–262 (2010)

    CAS  Google Scholar 

  16. H. Li, M. Zuo, T. Liu, Q. Chen, J. Zhang, Q. Zheng, RSC Adv. 6, 10099–10113 (2016)

    CAS  Google Scholar 

  17. C. Lin, M. Zuo, H. Li, T. Liu, Q. Zheng, Chin. J. Polym. Sci. 33(8), 1162–1175 (2015)

    CAS  Google Scholar 

  18. A. Sarvi, U. Sundararaj, Polym. Compos. 37(5), 1523–1530 (2016)

    CAS  Google Scholar 

  19. M. Lee, H. Jeon, B.H. Min, J.H. Kim, J. Appl. Polym. Sci. 121(2), 743–749 (2011)

    CAS  Google Scholar 

  20. I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, E. Cazzanelli, Solid State Ionics 177, 581–588 (2006)

    CAS  Google Scholar 

  21. S. Rajendran, O. Mahendran, T. Mahalingam, Eur. Polym. J. 38, 49–55 (2002)

    CAS  Google Scholar 

  22. M.S. Su’ait, A. Ahmad, H. Hamzah, M.Y.A. Rahman, Electrochim. Acta 57, 123–131 (2011)

    Google Scholar 

  23. R. Kumar, J.P. Sharma, S.S. Sekhon, Eur. Polym. J. 41, 2718–2724 (2005)

    CAS  Google Scholar 

  24. A.M.M. Ali, M.Z.A. Yahya, H. Bahron, R.H.Y. Subban, M.K. Harun, I. Atan, Mater. Lett. 61, 2026–2029 (2007)

    CAS  Google Scholar 

  25. K.W. Chew, K.W. Tan, Int. J. Electrochem. Sci. 6, 5792–5801 (2011)

    CAS  Google Scholar 

  26. L. Tian Khoon, N. Ataollahi, N.H. Hassan, A. Ahmad, J. Solid State Electrochem. 20, 203–213 (2016)

    CAS  Google Scholar 

  27. A.R. Polu, H.W. Rhee, D.K. Kim, J. Mater. Sci. Mater. Electron. 11, 8548–8554 (2015)

    Google Scholar 

  28. M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Solid State Ionics 104, 267–274 (1997)

    CAS  Google Scholar 

  29. T.K. Lee, A. Ahmad, H.M. Dahlan, M.Y.A. Rahman, J. Appl. Polym. Sci. 124, 2227–2233 (2012)

    Google Scholar 

  30. T.K. Lee, S. Afiqah, A. Ahmad, H.M. Dahlan, M.Y.A. Rahman, J. Solid State Electrochem. 16, 2251–2260 (2012)

    CAS  Google Scholar 

  31. S. Rajendran, O. Mahendran, K. Krishnaveni, J. New Mat. Electrochem. Syst. 6, 25–28 (2003)

    CAS  Google Scholar 

  32. A.S. Samsudin, M.B.N. Isa, J. App. Sci. 12, 174–179 (2012)

    CAS  Google Scholar 

  33. S. Rajendran, M. Sivakumar, R. Subadevi, Mater. Lett. 58, 641–649 (2004)

    CAS  Google Scholar 

  34. J.D. Jeon, S.Y. Kwak, B.W. Cho, J. Electrochem. Soc. 152, 1583–1589 (2005)

    Google Scholar 

  35. V. Aravindan, P. Vickraman, Solid State Sci. 9, 1069–1073 (2007)

    CAS  Google Scholar 

  36. M.V. Leena Chandra, S. Karthickeyan, S. Selvasekarapandian, M. Premalatha, S. Monisha, J. Polym. Eng. 37, 617–631 (2016)

    Google Scholar 

  37. S. Ramesh, P.L. Ong, Polym. Chem. 1, 702–707 (2010)

    CAS  Google Scholar 

  38. S.K. Tripathi, A. Gupta, M. Kumari, Bull. Mater. Sci. 35, 969–975 (2012)

    CAS  Google Scholar 

  39. S. Shastry, K.J. Rao, Solid State Ionics 44, 187–198 (1991)

    CAS  Google Scholar 

  40. K. Ramly, M.I.N. Isa, A.S.A. Khiar, Mater. Res. Innov. 15, S82 (2011)

    Google Scholar 

  41. X. Helan Flora, M. Ulaganathan, R.S. Babu, S. Rajendran, Ionics 18, 731–736 (2012)

    Google Scholar 

  42. J.M. Song, H.R. Kang, S.W. Kim, W.M. Lee, H.T. Kim, Electrochim. Acta 48, 1339–1346 (2003)

    CAS  Google Scholar 

  43. R. Prasanth, V. Aravindan, M. Srinivasan, J. Power Sources 202, 299–307 (2012)

    CAS  Google Scholar 

  44. M.A.K.L. P.A.R.D. Jayathilaka, I. Dissanayake, B.E. Albbinsson, Mellander, Electrochim. Acta 47, 3257–3268 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Ganesan or K. K. Mothilal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, S.V., Mothilal, K.K., Selvasekarapandian, S. et al. The effect of titanium dioxide nano-filler on the conductivity, morphology and thermal stability of poly(methyl methacrylate)—poly(styrene-co-acrylonitrile) based composite solid polymer electrolytes. J Mater Sci: Mater Electron 29, 8089–8099 (2018). https://doi.org/10.1007/s10854-018-8815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8815-8

Navigation