Skip to main content
Log in

Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. Isothermal crystallization and subsequent melting behavior, thermal stability, crystal structure, spherulitic morphology and mechanical properties of PBS and its nanocomposites were studied by DSC, TGA, WAXD, POM and DMA in detail. The crystallization rate of PBS in its nanocomposites was accelerated by the addition of LDH, due to its heterogeneous nucleation effect. The Avrami equation successfully described the isothermal crystallization kinetics of the nanocomposites. The melting profile of PBS/LDH composites and pure PBS showed the very similar T c-dependent DSC traces. The TGA analysis revealed that the catalyst effect of Mg and/or Al metals reduced the thermal decomposition temperature of PBS. The spherulite size of PBS/LDH nanocomposites decreased and the spherulite density increased remarkably with an increase of LDH, however, the crystalline structure was not influenced by the presence of LDH, as evidenced by the same diffraction peaks from WAXD patterns. The DMA results indicated that a significant enhancement of the modulus of the nanocomposites was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2:605–613

    Article  CAS  Google Scholar 

  2. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  3. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40:8501–8517

    Article  CAS  Google Scholar 

  4. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  5. Ray SS, Okamoto K, Okamoto M (2003) Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367

    Article  CAS  Google Scholar 

  6. Shih Y-F, Wu T-M (2009) Enzymatic degradation kinetics of poly(butylene succinate) nanocomposites. J Polym Res 16:109–115

    Article  CAS  Google Scholar 

  7. Someya Y, Nakazato T, Teramoto N, Shibata M (2004) Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J Appl Polym Sci 91:1463–1475

    Article  CAS  Google Scholar 

  8. Ray SS, Okamoto K, Okamoto M (2006) Structure and properties of nanocomposites based on poly(butylene succinate) and organically modified montmorillonite. J Appl Polym Sci 102:777–785

    Article  CAS  Google Scholar 

  9. Chen GX, Kim ES, Yoon JS (2005) Poly(butylene succinate)/twice functionalized organoclay nanocomposites: preparation, characterization, and properties. J Appl Polym Sci 98:1727–1732

    Article  CAS  Google Scholar 

  10. Chen GX, Yoon JS (2005) Nonisothermal crystallization kinetics of poly(butylene succinate) composites with a twice functionalized organoclay. J Polymer Sci B Polymer Phys 43:817–826

    Article  CAS  Google Scholar 

  11. Shih YF, Wang TY, Jeng RJ, Wu JY, Teng CC (2007) Biodegradable nanocomposites based on poly(butylene succinate)/organoclay. J Polym Environ 15:151–158

    Article  Google Scholar 

  12. Chen C-H (2008) Effect of attapulgite on the crystallization behavior and mechanical properties of poly(butylene succinate) nanocomposites. J Phys Chem Solid 69:1411–1414

    Article  CAS  Google Scholar 

  13. Leroux F, Besse J (2004) Layered double hydroxide/polymer nanocomposites. Int Sci Technol 1:459–495

    Article  CAS  Google Scholar 

  14. He FA, Zhang LM, Yang F, Chen LS, Wu Q (2006) New nanocomposites based on syndiotactic polystyrene and organo-modified ZnAl layered double hydroxide. J Polym Res 13:483–493

    Article  CAS  Google Scholar 

  15. Costa FR, Abdel-Goad M, Wagenknecht U, Heinrich G (2005) Nanocomposites based on polyethylene and Mg-Al layered double hydroxide. I. Synthesis and characterization. Polymer 46:4447–4453

    Article  CAS  Google Scholar 

  16. Lonkar SP, Singh RP (2009) Isothermal crystallization and melting behavior of polypropylene/layered double hydroxide nanocomposites. Thermochim Acta 491:63–70

    Article  CAS  Google Scholar 

  17. Zhao CX, Peng G, Liu BL, Jiang ZW (2011) Synergistic effect of organically modified layered double hydroxide on thermal and flame-retardant properties of poly(butyl acrylate-vinyl acetate). J Polym Res 18:1971–1981

    Article  CAS  Google Scholar 

  18. Sorrentino A, Gorrasi G, Tortora M, Vittoria V, Costantino U, Marmottini F, Padella F (2005) Incorporation of Mg-Al hydrotalcite into a biodegradable Poly(ε-caprolactone) by high energy ball milling. Polymer 46:1601–1608

    Article  CAS  Google Scholar 

  19. Mangiacapra P, Raimondo M, Tammaro L, Vittoria V (2007) Nanometric dispersion of a Mg/Al layered double hydroxide into a chemically modified polycaprolactone. Biomacromolecules 8:773–779

    Article  CAS  Google Scholar 

  20. Costantino U, Bugatti V, Gorrasi G, Montanari F, Nocchetti M, Tammaro L, Vittoria V (2009) New polymeric composites based on poly(ε-caprolactone) and layered double hydroxides containing antimicrobial species. ACS Appl Mater Interfaces 1:668–677

    Article  CAS  Google Scholar 

  21. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667

    CAS  Google Scholar 

  22. Du LC, Qu BJ, Meng YZ, Zhu Q (2006) Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos Sci Technol 66:913–918

    Article  CAS  Google Scholar 

  23. Zubitur M, Mugica A, Areizaga J, Cortázar M (2010) Morphology and thermal properties relationship in poly(p-dioxanone)/layered double hydroxides nanocomposites. Colloid Polymer Sci 288:809–818

    Article  CAS  Google Scholar 

  24. Hsu S-F, Wu T-M, Liao C-S (2006) Isothermal crystallization kinetics of poly(3-hydroxybutyrate)/layered double hydroxide nanocomposites. J Polymer Sci B Polymer Phys 44:3337–3347

    Article  CAS  Google Scholar 

  25. Dagnon KL, Chen HH, Innocentini-Mei LH, D’Souza NA (2009) Poly[(3-hydroxybutyrate)- co-(3-hydroxyl valerate)]/layered double hydroxide nanocomposites. Polym Int 58:133–141

    Article  CAS  Google Scholar 

  26. Pan P, Zhu B, Dong T, Inoue Y (2008) Poly(L-lactide)/layered double hydroxides nanocomposites: preparation and crystallization behavior. J Polymer Sci B Polymer Phys 46:2222–2233

    Article  CAS  Google Scholar 

  27. Katiyar V, Gerds N, Koch CB, Risbo J, Hansen HCB, Plackett D (2010) PolyL-lactide-layered double hydroxide nanocomposites via in situ polymerization of L-lactide. Polymer Degrad Stabil 95:2563–2573

    Article  CAS  Google Scholar 

  28. Chiang M-F, Wu T-M (2010) Synthesis and characterization of biodegradable poly(L-lactide)/layered double hydroxide nanocomposites. Compos Sci Technol 70:110–115

    Article  CAS  Google Scholar 

  29. Zhou Q, Verney V, Commereuc S, Chin I-J, Leroux F (2010) Strong interfacial attrition developed by oleate/ layered double hydroxide nanoplatelets dispersed into poly(butylene succinate). J Colloid Interface Sci 349:127–133

    Article  CAS  Google Scholar 

  30. Di Lorenzo ML, Silvestre C (1999) Non-isothermal crystallization of polymers. Prog Polym Sci 24:917–950

    Article  Google Scholar 

  31. Avrami MJ (1940) The kinetics of phase change. II. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  32. Bonnet M, Rogausch K-D, Petermann J (1999) The endothermic “annealing peak” of poly(phenylene sulphide) and poly(ethylene terephthalate). Colloid Polymer Sci 277:513–518

    Article  CAS  Google Scholar 

  33. Wang X, Zhou J, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43:3163–3170

    Article  CAS  Google Scholar 

  34. Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polymer Sci B Polymer Phys 37:1357–1366

    Article  CAS  Google Scholar 

  35. Qiu ZB, Komura M, Ikehara T, Nishi T (2003) DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 44:7781–7785

    Article  CAS  Google Scholar 

  36. Hoffman JD, Weeks JJ (1965) Melting process and the equilibrium melting temperature of polychloro trifluoroethylene. J Res Natl Bur Stand Sect A 66:13–28

    Google Scholar 

  37. Shan G-F, Gong X, Chen W-P, Chen L, Zhu M-F (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Colloid Polymer Sci 289:1005–1014

    Article  CAS  Google Scholar 

  38. Cam D, Marucci M (1997) Influence of residual monomers and metals on poly(L-lactide) thermal stability. Polymer 38:1879–1884

    Article  CAS  Google Scholar 

  39. Chiang M-F, Chu M-Z, Wu T-M (2011) Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly(L-lactide) nanocomposites. Polymer Degrad Stabil 96:60–66

    Article  CAS  Google Scholar 

  40. Xu Y, Xu J, Guo B, Xie X (2007) Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polymer Sci B Polymer Phys 45:420–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (No. 31000427) and the Fundamental Research Funds for the Central Universities (DUT12JB09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Chen, G., Shi, Y. et al. Isothermal crystallization and mechanical properties of poly(butylene succinate)/layered double hydroxide nanocomposites. J Polym Res 19, 9930 (2012). https://doi.org/10.1007/s10965-012-9930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9930-5

Keywords

Navigation