Skip to main content
Log in

pH-sensitive interpenetrating network hydrogels based on pachyman and its carboxymethylated derivatives for oral drug delivery

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

pH-sensitive, interpenetrating polymer network hydrogels were synthesized based on pachyman and its carboxymethylated derivatives (CMP) by the confunctional crosslinker agent epichlorohydrin. The structure and morphology of pachyman/CMP (CPCS) hydrogels were characterized. In the swelling assays, the composite hydrogels maintained remarkable swelling capacity and significant good pH sensitivity. The swelling behavior was much improved by the incorporation of CMP than the pure pachyman hydrogels. While increasing the content of CMP in the hydrogels, the equilibrium swelling time was more reduced and the swelling ratio increased obviously due to the better water solubility of CMP. In the drug release study, the results indicated that CPCS hydrogels demonstrate better pH-resistant sustained drug release for bovine serum albumin, and the adjustment of the proportion of pachyman to CMP results in improved drug release behavior, which suggests that the CPCS hydrogels are promising candidates for sustained drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Article  Google Scholar 

  2. Matricardi P, Meo CD, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65:1172–1187

    Article  CAS  Google Scholar 

  3. Vashist A, Gupta YK, Ahmad S (2012) Interpenetrating biopolymer network based hydrogels for an effective drug delivery system. Carbohydr Polym 87:1433–1439

    Article  CAS  Google Scholar 

  4. Singh B, Bala R (2014) Polysaccharide based hydrogels as controlled drug delivery system for GIT cancer. Int J Biol Macromol 65:524–533

    Article  CAS  Google Scholar 

  5. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  6. Nguyen MK, Alsberg E (2014) Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. Prog Polym Sci 39:1235–1265

    Article  CAS  Google Scholar 

  7. Hunt JA, Chen R, Veen TV, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338

    Article  CAS  Google Scholar 

  8. Li P, Dou XQ, Feng CL, Zhang D (2013) Mechanical reinforcement of C2-phenyl-derived hydrogels for controlled cell adhesion. Soft Matter 9:3750–3757

    Article  CAS  Google Scholar 

  9. Wang H, Han A, Cai Y, Xie Y, Zhou H, Long J, Yang Z (2013) Multifunctional biohybrid hydrogels for cell culture and controlled drug release. Chem Commun 49:7448–7450

    Article  CAS  Google Scholar 

  10. Silva R, Singh R, Sarker B, Papageorgiou D, Juhasz JA, Roether JA, Cicha L, Kaschta J, Schubert DW, Chrissafis K, Detscha R, Boccaccini AR (2014) Hybrid hydrogels based on keratin and alginate for tissue engineering. J Mater Chem B 2:5441–5451

    Article  CAS  Google Scholar 

  11. Patenaude M, Smeets NB, Hoare T (2014) Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol Rapid Commun 35:598–617

    Article  CAS  Google Scholar 

  12. Pasale SK, Cerroni B, Ghugare SV, Paradossi G (2014) Multiresponsive hyaluronan-p(NiPAAm) “Click”-linked hydrogels. Macromol Biosci 14:1025–1038

    Article  CAS  Google Scholar 

  13. Bocourt M, Bada N, Acosta N, Bucioc E, Penichea C (2014) Synthesis and characterization of novel pH-sensitive chitosan-poly(acrylamide-coitaconic acid) hydrogels. Polym Int 63:1715–1723

    Article  CAS  Google Scholar 

  14. Heilmann S, Küchler S, Wischke C, Lendlein A, Steind C, Schäfer-Korting M (2013) A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm 444:96–102

    Article  CAS  Google Scholar 

  15. Hamcerencu M, Desbrieres J, Khoukh A, Popaa M, Riess G (2011) Thermodynamic investigation of thermoresponsive xanthan-poly (N-isopropylacrylamide) hydrogels. Polym Int 60:1527–1534

    Article  CAS  Google Scholar 

  16. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92:719–725

    Article  CAS  Google Scholar 

  17. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7:569–579

    Article  CAS  Google Scholar 

  18. Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM (2013) Polymeric hydrogels for oral insulin delivery. J Control Release 165:129–138

    Article  CAS  Google Scholar 

  19. Koetting MC, Peppas NA (2014) pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins. Int J Pharm 471:83–91

    Article  CAS  Google Scholar 

  20. Widjaja LK, Bora M, Chan PNPH, Lipik V, Wong TTL, Venkatraman SS (2013) Evaluation of the in vitro and in vivo biocompatibility of carrageenanbased hydrogels. J Biomed Mater Res Part A 00A:1–10

    Google Scholar 

  21. Boddohi S, Kipper MJ (2010) Engineering nanoassemblies of polysaccharides. Adv Mater 22:2998–3016

    Article  CAS  Google Scholar 

  22. Kulterer MR, Reichel VE, Kargl R, Köstler S, Sarbova V, Heinze T, Stana-Kleinschek K, Ribitsch V (2012) Functional polysaccharide composite nanoparticles from cellulose acetate and potential applications. Adv Funct Mater 22:1749–1758

    Article  CAS  Google Scholar 

  23. Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 25:448–460

    Article  CAS  Google Scholar 

  24. Klak MC, Lefebvre E, Remy L, Agniel R, Picard J, Giraudier S, Larreta-Garde V (2013) Gelatin-alginate gels and their enzymatic modifications: controlling the delivery of small molecules. Macromol Biosci 13:687–695

    Article  CAS  Google Scholar 

  25. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F (1970) Antitumour polysaccharide derived chemically from natural glucan (pachyman). Nature 225:943–944

    Article  CAS  Google Scholar 

  26. Hu Y, He XR, Lei L, Liang SC, Qiu GF, Hu XM (2008) Preparation and characterization of self-assembled nanoparticles of the novel carboxymethyl pachyman-deoxycholic acid conjugates. Carbohydr Polym 74:220–227

    Article  CAS  Google Scholar 

  27. Hu Y, Zhou X, Lu Y, Hu C, Hu XM (2009) Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery. Int J Pharm 371:89–98

    Article  CAS  Google Scholar 

  28. Hu Y, Yang T, Hu X (2012) Novel polysaccharides-based Nanoparticle carriers prepared by polyelectrolyte complexation for protein drug delivery. Polym Bull 68:1183–1199

    Article  CAS  Google Scholar 

  29. Dulong V, Cerf DL, Picton L, Muller G (2006) Carboxymethylpullulan hydrogels with a ionic and/or amphiphilic behavior: swelling properties and entrapment of cationic and/or hydrophobic molecules. Coll Surf A 274:163–169

    Article  CAS  Google Scholar 

  30. Xiao Y, Xu W, Zhu Q, Yan B, Yang D, Yang J, He X, Liang S, Hu X (2009) Preparation and characterization of a novel pachyman-based pharmaceutical aid. II: a pH-sensitive, biodegradable and biocompatible hydrogel for controlledrelease of protein drugs. Carbohydr Polym 77:612–620

    Article  CAS  Google Scholar 

  31. Liang S, Liu L, Huang Q, Yam KL (2009) Preparation of single or double network chitosan/poly(vinyl alcohol) gel films through selective cross-linking method. Carbohydr Polym 77:718–724

    Article  CAS  Google Scholar 

  32. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  33. Zhao S, Ma D, Zhang L (2006) New semi-interpenetrating network hydrogels: Synthesis, characterization and properties. Macromol Biosci 6:445–451

    Article  CAS  Google Scholar 

  34. Cui L, Jf J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38

    Article  CAS  Google Scholar 

  35. Wang YF, Zhang LN, Ruan D (2004) Preparation and structure of five derivatives of β-(1–3)-D-glucan isolated from poria cocos sclerotium. Chin J Polym Sci 22:137–145

    CAS  Google Scholar 

  36. Wang Y, Mo Q, Li Z, Lai H, Lou J, Liu S, Mao J (2012) Effects of degree of carboxymethylation on physicochemical and biological properties of pachyman. Int J Biol Macromol 51:1052–1056

    Article  CAS  Google Scholar 

  37. Wang YF, Zhang LN (2006) Chain conformation of carboxymethylated derivatives of (1–3)-β-d-glucan from Poria cocos sclerotium. Carbohydr Polym 65:504–509

    Article  CAS  Google Scholar 

  38. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/Urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

  39. Liu YY, Fan XD (2003) Preparation and characterization of a novel responsive hydrogel with a cyclodextrin-based macromonomer. J Appl Polym Sci 89:361–367

    Article  CAS  Google Scholar 

  40. Chang CY, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  41. Denizli BK, Can HK, Rzaev ZMO, Guner A (2004) Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinking agents. Polymer 45:6431–6435

    Article  CAS  Google Scholar 

  42. Zhang LM, Wu CX, Huang JY, Peng XH, Chen P, Tang SQ (2012) Synthesis and characterization of a degradable composite agarose/HA hydrogel. Carbohydr Polym 88:1445–1452

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from the National Natural Science Foundation of China (No.81401510) and the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZQ12019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Mei, Z. & Hu, X. pH-sensitive interpenetrating network hydrogels based on pachyman and its carboxymethylated derivatives for oral drug delivery. J Polym Res 22, 98 (2015). https://doi.org/10.1007/s10965-014-0626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0626-x

Keywords

Navigation