Skip to main content
Log in

Novel polysaccharides-based nanoparticle carriers prepared by polyelectrolyte complexation for protein drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyelectrolyte complexation, as one simple and promising method for preparing nanoparticles, is employed to find the use in the delivery of protein drugs. Using this method, we fabricated one kind of novel nanoparticles based on two natural polysaccharides, which are the negatively charged carboxymethyl pachyman (CMP) and the positively charged chitosan (CS). The major effect factors on the average particle size, polydispersity, and zeta potential of the nanoparticles were studied. The research indicated that the physicochemical properties of the nanoparticles were deeply affected by the molecular weight, concentration, and the ionic content of two polysaccharides. The mean particle size of CMP/CS nanoparticles was almost in the range of 100–200 nm for various preparation conditions. The morphology of nanoparticles characterized by a transmission electron microscope was spherical in shape with smooth surface structure. In order to study the feasibility of these nanoparticles as oral protein delivery carriers, the encapsulation efficiency of CMP/CS nanoparticles for bovine serum albumin (BSA) was evaluated for optimized condition. It turned out that the encapsulation efficiency of BSA-loaded CMP/CS nanoparticles varied from 30.1 to 52.9% depending on the initial loading concentration of BSA as well as the concentration of CMP and CS employed in particle formation, which indicated that the concentration of polymers and drugs were all contributed to the encapsulation efficiency of nanoparticles. This report opened up another interesting perspective to develop these natural polysaccharides with emerging new applications, which have great potentials in application in the nanoparticulate delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qiu B, Stefanos S, Ma J, Lalloo A, Perry BA, Leibowitz MJ, Sinko PJ, Stein S (2003) A hydrogel prepared by in situ cross-linking of a thiol-containing poly(ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials 24:11–18

    Article  Google Scholar 

  2. George M, Abraham TE (2007) pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. Int J Pharm 335:123–129

    Article  CAS  Google Scholar 

  3. Ponchel G, Irache JM (1998) Specific and non-specific bioadhesive particulate systems for oral delivery to the gastrointestinal tract. Drug Delivery Rev 34:191–219

    Article  CAS  Google Scholar 

  4. Russell-Jones GJ (2000) Oral vaccine delivery. J Controlled Release 2000(65):49–54

    Article  Google Scholar 

  5. Wang W (1996) Oral protein drug delivery. J Drug Target 4:195–232

    Article  CAS  Google Scholar 

  6. Kompella UB, Lee VH (2001) Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 46:211–245

    Article  CAS  Google Scholar 

  7. des Rieux A, Fievez V, Garinot M, Schneider YJ, Pr′eat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Article  CAS  Google Scholar 

  8. Chen F, Zhang ZR, Yuan F, Qin X, Wang M, Huang Y (2008) In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm 349:226–233

    Article  CAS  Google Scholar 

  9. Lowe PJ, Temple CS (1994) Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 46:547–552

    Article  CAS  Google Scholar 

  10. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolcules. Adv Drug Del Rev 47:57–83

    Article  Google Scholar 

  11. Gullberg E, Leonard M, Karlsson J, Hopkins AM, Brayden D, Baird AW, Artursson P (2000) Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem Biophys Res Commun 279:808–813

    Article  CAS  Google Scholar 

  12. Galindo-Rodriguez SA, Allemann E, Fessi H, Doelker E (2005) Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies. Crit Rev Ther Drug Carrier Syst 22:419–464

    CAS  Google Scholar 

  13. Clark MA, Blair H, Liang L, Brey RN, Brayden D, Hirst BH (2001) Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20:208–217

    Article  CAS  Google Scholar 

  14. Zhang XG, Teng DY, Wu ZM, Wang X, Wang Z et al (2008) PEG-grafted chitosan nanoparticles as an injectable carrier for sustained protein release. J Mater Sci Mater Med 19:3525–3533

    Article  CAS  Google Scholar 

  15. Mao H, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y et al (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Rel 70:399–421

    Article  CAS  Google Scholar 

  16. Silva DA, Maciel JS, Feitosa JPA, Paula HCB, de Paula RCM (2010) Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan. J Mater Sci 45:5605–5610

    Article  CAS  Google Scholar 

  17. Mao S, Bakowsky U, Kissel T (2006) Self assembled polyelectrolyte nanocomplexes between chitosan derivatives and insulin. J Pharm Sci 95:1035–1048

    Article  CAS  Google Scholar 

  18. Shu S, Zhang X, Teng Dg, Wang Z, Li C (2009) Polyelectrolyte nanoparticles based on water-soluble chitosan-poly(l-aspartic acid)-polyethylene glycol for controlled protein release. Carbohydr Res 344:1197–1204

    Article  CAS  Google Scholar 

  19. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Del Rev 60:1650–1662

    Article  CAS  Google Scholar 

  20. Krylova E, Ivanov A, Orlovski V, El-Registan G, Barinov S (2002) Hydroxypatite-polysaccharide granules for drug delivery. J Mater Sci Mater Med 13:87–90

    Article  CAS  Google Scholar 

  21. Zhang H, Wu C, Zhang Y, White CJB, Xue Y, Nie H, Zhu L (2010) Elaboration, characterization and study of a novel affinity membrane made from electrospun hybrid chitosan/nylon-6 nanofibers for papain purification. J Mater Sci 45:2296–2304

    Article  CAS  Google Scholar 

  22. Chen F, Zhang ZR, Huang Y (2007) Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm 336:166–173

    Article  CAS  Google Scholar 

  23. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  CAS  Google Scholar 

  24. Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20:175–182

    Article  CAS  Google Scholar 

  25. Lee KY, Ha WS, Park WH (1995) Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 16:1211–1216

    Article  CAS  Google Scholar 

  26. Bernkop-Schurch A, Humenberg C, Valenta C (1998) Basic Studies on bioadhesive delivery systems for peptide and protein drugs. Int J Pharm 165:217–225

    Article  Google Scholar 

  27. van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Verhoef JC, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 28:1400–1408

    Article  Google Scholar 

  28. Artursson P, Lindmark T, Davis S, Illum L (1994) Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res 11:1358–1361

    Article  CAS  Google Scholar 

  29. Wang L, Wang A (2007) Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979

    Article  CAS  Google Scholar 

  30. Tang Y, Zhao Y, Li Y, Du Y (2010) A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polym Bull 64:791–804

    Article  CAS  Google Scholar 

  31. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F (1970) Antitumour polysaccharide derived chemically from natural glucan (pachyman). Nature 225:943–944

    Article  CAS  Google Scholar 

  32. Wang YF, Zhang M, Ruan D, Shashkov AS, Kilcoyne M, Savage AV, Zhang L (2004) Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydr Res 339:327–334

    Article  CAS  Google Scholar 

  33. Narui T, Takahashi K, Kobayashi M, Shibata S (1980) A polysaccharide produced by laboratory cultivation of Poria cocos wolf. Carbohydr Res 87:161–163

    Article  CAS  Google Scholar 

  34. Yamada H, Kiyohara H, Takemoto N, Zhao JF, Kawamura H, Komatsu Y, Cyong JC, Aburada M, Hosoya E (1992) Studies on immunologically active substances from kampo medicine, juzen-taiho-to. 3. Mitogenic and complement activating activities of the herbal components of juzentaiho-to. Planta Med 58:166–170

    Article  CAS  Google Scholar 

  35. Schinella GR, Tournier HA, Prieto JM, Mordujovich de Buschiazzo P, Rios JL (2002) Antioxidant activity of anti-inflammatory plant extracts. Life Sci 70:1023–1033

    Article  CAS  Google Scholar 

  36. Wang SX, Wen YY, Hu CX (1995) Immunoactivities of the polysaccharides from Morus-alba, Chlamydomonas-mexicana and Poria-cocos. Phytother Res 9:448–451

    Article  CAS  Google Scholar 

  37. Hu Y, Zhou X, Lu Y, Hu C, Hu X (2008) Novel biodegradable hydrogels based on pachyman and its derivatives for drug delivery. Int J Pharm 371:89–98

    Article  Google Scholar 

  38. Hamuro J, Yamashita Y, Ohsaka Y, Maeda YY, Chihara G (1971) Carboxymethylpachymaran, a new water soluble polysaccharide with marked antitumour activity. Nature 233:486–487

    Article  CAS  Google Scholar 

  39. Wang YF, Zhang LN, Li YQ, Hou XH, Zeng FB (2004) Correlation of structure to antitumor activities of five derivatives of a β-glucan from Poria cocos sclerotium. Carbohydr Res 339:2567–2574

    Article  CAS  Google Scholar 

  40. Hu Y, He XR, Lei L, Liang SC, Qiu GF, Hu XM (2008) Preparation and characterization of self-assembled nanoparticles of the novel carboxymethyl pachyman-deoxycholic acid conjugates. Carbohydr Polym 74:220–227

    Article  CAS  Google Scholar 

  41. Xiao YL, Liang SC, Qiu GF, Wu JY, Zhang JB, Hu XM (2007) Preparation, characterization and tableting properties of two new pachyman-based pharmaceutical aids: I. Disintegrants in dispersible tablets. Polym Advan Technol 18:268–274

    Article  CAS  Google Scholar 

  42. Wang YF, Zhang LN, Ruan D (2004) Preparation and structure of five derivatives of β-(1–3)-d-glucan isolated from Poria cocos sclerotium. Chin J Polym Sci 22:137–145

    CAS  Google Scholar 

  43. Eyler RW, Klug ED, Diephuis F (1947) Determination of degree of substitution of sodium carboxymethylcellulose. Anal Chem 19:24–27

    Article  CAS  Google Scholar 

  44. Tian F, Liu Y, Hu K, Zhao BY (2004) Study of the depolymerization behavior of chitosan by hydrogen peroxide. Carbohydr Polym 57:31–37

    Article  CAS  Google Scholar 

  45. Liu Z, JiaoY LiuF, Zhang Z (2007) Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Materi Res Part A 83A:806–812

    Article  CAS  Google Scholar 

  46. Roberts GAF, Domszy JG (1982) Determination of the viscometric constants for chitosan. Int J Biol Macromol 4:374–377

    Article  CAS  Google Scholar 

  47. Bayat A, Dorkoos FA, Dehpour AR, Moezi L, Larijani B, Junginger HE, Rafiee-Tehrani M (2008) Nanoparticles of quaternized chitosan derivatives as a carrier for colon delivery of insulin: ex vivo and in vivo studies. Int J Pharm 356:259–266

    Article  CAS  Google Scholar 

  48. John MW (2002) The protein protocols handbook, 2nd edn. Humana Press Inc., New Jersey, p 15

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of South-Central University for Nationalities: Studies on Nanoparticles based on Pachyman for drug delivery (YZY10009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Yang, T. & Hu, X. Novel polysaccharides-based nanoparticle carriers prepared by polyelectrolyte complexation for protein drug delivery. Polym. Bull. 68, 1183–1199 (2012). https://doi.org/10.1007/s00289-011-0683-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-011-0683-9

Keywords

Navigation