Skip to main content
Log in

Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyethylene glycol (PEG)- and polyethylene glycol–polycaprolactone (PEG–PCL)-based hydrogels were synthesized with various compositions of prepolymers by using ROP and click chemistry methods. Relevant prepolymers were characterized by 1H NMR and FTIR spectroscopy. In order to study the influence of network parameters on swelling and release kinetics, experimental data were approximated by several mathematical models including zero order, first order, Higuchi and Korsmeyer–Peppas to determine the kinetics of swelling and diclofenac sodium release from hydrogels. The obtained results showed that the swelling and release data were best fitted to Korsmeyer–Peppas model. The results of the swelling study showed that the swelling properties of the hydrogels varied with the changes in the PEG molecular weights, as well as concentration of PCL. All of the hydrogels showed non-Fickian diffusion, but when PCL concentration increased and PEG molecular weights decreased, the n values were decreased and reached n = 0.5 (Fickian diffusion). The kinetics of diclofenac sodium release from hydrogels showed similar behavior so that in F hydrogels with the highest PCL concentration, the release mechanism fully changed from non-Fickian to Fickian diffusion. In other words, with increasing cross-link density and PCL concentration, the swelling degree and flexibility of networks decreased. Therefore, the swelling and release mechanism changed from non-Fickian to Fickian diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373. https://doi.org/10.3390/ma2020353

    Article  CAS  PubMed Central  Google Scholar 

  3. Chen T, Chen Y, Rehman HU et al (2018) Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces 10:33523–33531. https://doi.org/10.1021/acsami.8b10064

    Article  CAS  PubMed  Google Scholar 

  4. Chen H, Cheng J, Ran L et al (2018) An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydr Polym 201:522–531. https://doi.org/10.1016/j.carbpol.2018.08.090

    Article  CAS  PubMed  Google Scholar 

  5. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.044

    Article  CAS  PubMed  Google Scholar 

  6. Behrouzi M, Moghadam PN (2018) Synthesis of a new superabsorbent copolymer based on acrylic acid grafted onto carboxymethyl tragacanth. Carbohydr Polym 202:227–235. https://doi.org/10.1016/j.carbpol.2018.08.094

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Ning A, Xie P et al (2017) Synthesis and swelling behaviors of carboxymethyl cellulose-based superabsorbent resin hybridized with graphene oxide. Carbohydr Polym 157:48–56. https://doi.org/10.1016/j.carbpol.2016.09.070

    Article  CAS  PubMed  Google Scholar 

  8. Ohm C, Brehmer M, Zentel R (2010) Liquid crystalline elastomers as actuators and sensors. Adv Mater 22:3366–3387. https://doi.org/10.1002/adma.200904059

    Article  CAS  PubMed  Google Scholar 

  9. Sun JY, Keplinger C, Whitesides GM, Suo Z (2014) Ionic skin. Adv Mater 26:7608–7614. https://doi.org/10.1002/adma.201403441

    Article  CAS  PubMed  Google Scholar 

  10. Massad-Ivanir N, Shtenberg G, Zeidman T, Segal E (2010) Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv Funct Mater 20:2269–2277. https://doi.org/10.1002/adfm.201000406

    Article  CAS  Google Scholar 

  11. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351. https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  12. Liu W, Deng C, McLaughlin CR et al (2009) Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30:1551–1559. https://doi.org/10.1016/j.biomaterials.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  13. Torres-Rendon JG, Femmer T, De Laporte L et al (2015) Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering. Adv Mater 27:2989–2995. https://doi.org/10.1002/adma.201405873

    Article  CAS  PubMed  Google Scholar 

  14. Jia H, Huang Z, Fei Z, Dyson PJ, Zheng Z, Wang X (2016) Unconventional tough double-network hydrogels with rapid mechanical recovery, self-healing, and self-gluing properties. ACS Appl Mater Interfaces 8:31339–31347. https://doi.org/10.1021/acsami.6b11241

    Article  CAS  PubMed  Google Scholar 

  15. Yuan N, Xu L, Wang H et al (2016) Dual physically cross-linked double network hydrogels with high mechanical strength, fatigue resistance, notch-insensitivity, and self-healing properties. ACS Appl Mater Interfaces 8:34034–34044. https://doi.org/10.1021/acsami.6b12243

    Article  CAS  PubMed  Google Scholar 

  16. Deng Y, Huang M, Sun D et al (2018) Dual physically cross-linked κ-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application. ACS Appl Mater Interfaces 10:37544–37554. https://doi.org/10.1021/acsami.8b15385

    Article  CAS  PubMed  Google Scholar 

  17. Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–5916. https://doi.org/10.1039/C0SM01307B

    Article  CAS  Google Scholar 

  18. Hoare TR, Kohane DS (2016) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  19. Li J, Mooney DJ (2006) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:16071. https://doi.org/10.1038/natrevmats.2016.71

    Article  CAS  Google Scholar 

  20. Bajpai SK, Singh S (2006) Analysis of swelling behavior of poly (methacrylamide-co-methacrylic acid) hydrogels and effect of synthesis conditions on water uptake. React Funct Polym 66:431–440. https://doi.org/10.1016/j.reactfunctpolym.2005.09.003

    Article  CAS  Google Scholar 

  21. Singh TRR, McCarron PA, Woolfson AD, Donnelly RF (2009) Investigation of swelling and network parameters of poly (ethylene glycol)-crosslinked poly (methyl vinyl ether-co-maleic acid) hydrogels. Eur Polym J 45:1239–1249. https://doi.org/10.1016/j.eurpolymj.2008.12.019

    Article  CAS  Google Scholar 

  22. Bartil T, Bounekhel M, Cedric C, Jeerome R (2007) Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives. Acta Pharm 57:301–314. https://doi.org/10.2478/v10007-007-0024-6

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Ruvalcaba A, Sanchez-Diaz J, Becerra F, Cruz-Barba L, Gonzalez-Alvarez A (2009) Swelling characterization and drug delivery kinetics of polyacrylamide-co-itaconic acid/chitosan hydrogels. Express Polym Lett 3:25–32. https://doi.org/10.3144/expresspolymlett.2009.5

    Article  CAS  Google Scholar 

  24. Kim S, Lee K, Cha C (2016) Refined control of thermoresponsive swelling/deswelling and drug release properties of poly (N-isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. J Biomater Sci Polym Ed 27:1698–1711. https://doi.org/10.1080/09205063.2016.1230933

    Article  CAS  PubMed  Google Scholar 

  25. Dixit A, Kumar N, Bag DS, Agarwal K, Sharma Dhirendra K, Prasad NE (2019) Synthesis of AgNPs embedded double network nanocomposite hydrogels having high swelling and anti-bacterial characteristics. Adv Mater Lett 10:431–439. https://doi.org/10.5185/amlett.2019.2258

    Article  CAS  Google Scholar 

  26. Xu J, Li X, Sun F (2011) In vitro and in vivo evaluation of ketotifen fumarate-loaded silicone hydrogel contact lenses for ocular drug delivery. Drug Deliv 18:150–158. https://doi.org/10.3109/10717544.2010.522612

    Article  CAS  PubMed  Google Scholar 

  27. Nicolson PC, Vogt J (2001) Soft contact lens polymers: an evolution. Biomaterials 22:3273–3283. https://doi.org/10.1016/S0142-9612(01)00165-X

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Conway A, Chauhan A (2008) Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses. Biomaterials 29:2259–2269. https://doi.org/10.1016/j.biomaterials.2008.01.030

    Article  CAS  PubMed  Google Scholar 

  29. Lin C, Gitsov I (2010) Preparation and characterization of novel amphiphilic hydrogels with covalently attached drugs and fluorescent markers. Macromolecules 43:10017–10030. https://doi.org/10.1021/ma102044n

    Article  CAS  Google Scholar 

  30. Gitsov I, Zhu C (2003) Novel functionally grafted pseudo-semi-interpenetrating networks constructed by reactive linear—dendritic copolymers. J Am Chem Soc 125:11228–11234. https://doi.org/10.1021/ja0345625

    Article  CAS  PubMed  Google Scholar 

  31. Guzman G, Nugay T, Nugay I, Nugay N, Kennedy J, Cakmak M (2015) High strength bimodal amphiphilic conetworks for immunoisolation membranes: synthesis, characterization, and properties. Macromolecules 48:6251–6262. https://doi.org/10.1021/acs.macromol.5b01343

    Article  CAS  Google Scholar 

  32. Sun Y, Collett J, Fullwood NJ, Mac Neil S, Rimmer S (2007) Culture of dermal fibroblasts and protein adsorption on block conetworks of poly (butyl methacrylate-block-(2,3 propandiol-1-methacrylate-stat-ethandiol dimethacrylate)). Biomaterials 28:661–670. https://doi.org/10.1016/j.biomaterials.2006.09.024

    Article  CAS  PubMed  Google Scholar 

  33. Rimmer S, German MJ, Maughan J et al (2005) Synthesis and properties of amphiphilic networks 3: preparation and characterization of block conetworks of poly (butyl methacrylate-block-(2,3 propandiol-1-methacrylate-stat-ethandiol dimethacrylate)). Biomaterials 26:2219–2230. https://doi.org/10.1016/j.biomaterials.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  34. Kurian P, Zschoche S, Kennedy J (2000) Synthesis and characterization of novel amphiphilic block copolymers di-, tri-, multi-, and star blocks of PEG and PIB. J Polym Sci Part A Polym Chem 38:3200–3209. https://doi.org/10.1002/1099-0518

    Article  CAS  Google Scholar 

  35. Truong V, Blakey I, Whittaker AK (2012) Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by “click” chemistry. Biomacromolecules 13:4012–4021. https://doi.org/10.1021/bm3012924

    Article  CAS  PubMed  Google Scholar 

  36. Wang C-W, Liu C, Zhu X-W et al (2016) Synthesis of well-defined star-shaped poly(ε-caprolactone)/poly (ethylene glycol) amphiphilic co-networks by combination of ring opening polymerization and “click” chemistry. J Polym Sci Part A Polym Chem 54:407–417. https://doi.org/10.1002/pola.27790

    Article  CAS  Google Scholar 

  37. Wang H, Qin A, Li X, Zhao X, Liu D, He C (2015) Biocompatible amphiphilic conetwork based on crosslinked star copolymers: a potential drug carrier. J Polym Sci Part A Polym Chem 53:2537–2545. https://doi.org/10.1002/pola.27721

    Article  CAS  Google Scholar 

  38. Dabbaghi A, Rahmani S (2019) Synthesis and characterization of biodegradable multicomponent amphiphilic conetworks with tunable swelling through combination of ring-opening polymerization and “click” chemistry method as a controlled release formulation for 2,4-dichlorophenoxyacetic acid herbicide. Polym Adv Technol 30:368–380. https://doi.org/10.1002/pat.4474

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the University of Zanjan for their financial supports of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Rahmani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, M., Dabbaghi, A. & Rahmani, S. Swelling and drug delivery kinetics of click-synthesized hydrogels based on various combinations of PEG and star-shaped PCL: influence of network parameters on swelling and release behavior. Polym. Bull. 77, 3989–4010 (2020). https://doi.org/10.1007/s00289-019-02948-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02948-z

Keywords

Navigation