Skip to main content
Log in

Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

In this article, we study a generalized Anderson model driven by Gaussian noise which is white/colored in time and has the covariance of a fractional Brownian motion with Hurst index \(H<\frac{1}{2}\) in space. We prove the existence of the solution in the Skorohod sense and obtain upper and lower bounds for the pth moments for all \(p=2,3,\ldots \). Then we can prove that solution of this equation in the Skorohod sense is weakly intermittent. Hölder continuity of the solution with respect to the time and space variables is also deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aurzada, F., Dereich, S.: Small deviations of general Lévy processes. Ann. Probab. 37(5), 2066–2092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balan, R.M.: The stochastic wave equation with multiplicative fractional noise: a Malliavin calculus approach. Potential Anal. 36, 1–34 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balan, R.M., Chen, L.: Parabolic Anderson Model with space-time homogeneous Gaussian noise and rough initial condition. J. Theor. Probab. 31(4), 2216–2265 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balan, R.M., Conus, D.: Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44(2), 1488–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balan, R.M., Jolis, M., Quer-Sardanyons, L.: Intermittency for the hyperbolic Anderson models with rough noise in space. Stoch. Proc. Appl. 127, 2316–2338 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balan, R.M., Quer-Sardanyons, L., Song, J.: Hölder continuity for the parabolic Anderson model with space-time homogeneous Gaussian noise. Acta Math. Sci. 39(3), 717–730 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, L., Dalang, R.C.: Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. Stoch. Partial Differ. Equ. Anal. Comput. 3, 360–397 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Chen, X.: Parabolic Anderson model with a fractional Gaussian noise that is rough in time. Ann. Inst. Henri Poincaré Probab. Stat. 56(2), 792–825 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X.: Parabolic Anderson model with rough or critical Gaussian noise. Ann. Inst. Henri Poincaré Probab. Stat. 55(2), 941–976 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Debbi, L., Dozzi, M.: On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Proc. Appl. 115, 1761–1781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14(21), 548–568 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Foondun, M., Joseph, M.: Remarks on non-linear noise excitability of some stochastic equations. Stoch. Proc. Appl. 124(10), 3429–3440 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foondun, M., Liu, W., Omaba, M.: Moment bounds for a class of fractional stochastic heat equation. Ann. Probab. 45(4), 2131–2153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, Y., Huang, J., Lê, K., Nualart, D., Tindel, S.: Stochastic heat equation with rough dependence in space. Ann. Probab. 45(6B), 4561–4616 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20, 1–50 (2015)

    Article  MATH  Google Scholar 

  16. Hu, Y., Lê, K., Nualart, D., Tindel, S.: Parabolic Anderson model with rough dependence in space. In: Celledoni, E., et al. (eds.) Computation and Combinatorics in Dynamics, Stochastics and Control, vol. 13, pp. 477–498. Abel Symposia, Rosendal (2018)

    Chapter  MATH  Google Scholar 

  17. Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Relat. Fields 143, 285–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, J., Lê, K., Nualart, D.: Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise. Stoch. Partial Differ. Equ. Anal. Comput. 5(4), 614–651 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, Y., Shi, K., Wang, Y.: Stochastic fractional Anderson models with fractional Noises. Chin. Ann. Math. 31B(1), 101–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khoshnevisan, D.: Analysis of Stochastic Partial Differential Equations, Volume 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence (2014)

  21. Khoshnevisan, D., Kim, K.: Non-linear excitation and intermittency under high disorder. Proc. Am. Math. Soc. 143(9), 4073–4083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khoshnevisan, D., Kim, K.: Non-linear excitation of excitation of intermittent stochastic PDEs and the topology of LCA groups. Ann. Probab. 43(4), 1944–1991 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, J., Yan, L.: On a semilinear stochastic partial differential equation with double-parameter fractional noises. Sci. China Math. 57(4), 855–872 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, J., Tudor, C.A.: Generalized Anderson model with time-space multiplicative fractional noise. Results Math. 72, 1967–1989 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Song, J.: On a class of stochastic partial differential equations. Stoch. Proc. Appl. 127(1), 37–79 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, J., Song, X., Xu, F.: Fractional stochastic wave equation driven by Gaussian noise rough in space. Bernoulli 26(4), 2699–2726 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Ecole d’été de Probabilités de St. Flour XIV. Lecture Notes in Mathematics, vol. 1180, pp. 266–439. Springer, Berlin (1986)

Download references

Acknowledgements

We would like to thank the Editor and an anonymous referee whose comments and suggestions greatly improved the presentation of this paper.

Funding

This study was funded by Humanities and Social Sciences Foundation of the Ministry of Education of China (No. 18YJCZH101) and Major Research Plan of Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 18KJA110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we will recall the Riesz–Feller fractional derivative \({\mathcal {D}}_{\beta }^{\alpha }\varphi \) of a smooth and integrable function \(\varphi \) defined by its Fourier transform \({\mathcal {F}}\) by (see, for example, [7, 10, 24], etc.)

$$\begin{aligned} {\mathcal {F}}( {\mathcal {D}}_{\beta }^{\alpha }\varphi )(\xi )=-\Psi (\xi )\mathcal {F}(\varphi )(\xi ),\quad \xi \in {\mathbb {R}}, \end{aligned}$$

where \({\mathcal {F}}(\varphi )(\xi )=\int _{{\mathbb {R}}}e^{-\mathrm{i}\xi x}\varphi (x)\hbox {d}x\) denotes the Fourier transform of \(\varphi \) and we also denote by

$$\begin{aligned} \Psi (\xi )=|\xi |^{\alpha }\exp \left( -\mathrm{i}\beta \frac{\pi }{2}\hbox {sgn}(\xi )\right) , \end{aligned}$$
(62)

with \(\mathrm{i}^2+1=0\).

From the point of probabilist, in one space dimension, the operator \({\mathcal {D}}_{\beta }^{\alpha }\) is a closed, densely defined operator on \(L^{2}({\mathbb {R}})\) and it is the infinitesimal generator of a strictly \(\alpha \)-stable Lévy process \(\{X(t),t\ge 0\}\) (where “strictly” refers to the fact that the process is centered). This operator is a generalization of various well-known operators, such as the Laplacian operator (when \(\alpha =2\)), the Riemann–Liouville differential operator (when \(|\beta |=\alpha -[\alpha ]\)). It is self-adjoint only when \(\beta =0\) and in this case, it coincides with the fractional power of the Laplacian.

We refer the readers to [7, 10], etc., for more details about this operator \({\mathcal {D}}_{\beta }^{\alpha }\varphi \). Furthermore, let \(G_{t}(x)\) be the fundamental solution (also called Green function) of the following Cauchy problem:

$$\begin{aligned} \frac{\partial G_{t}}{\partial t}(x)={\mathcal {D}}_{\beta }^{\alpha }G_{t}(x), \end{aligned}$$
(63)

with \(G_{0}(x)=\delta _{0}(x)\) for \(t>0\) and \(x\in {\mathbb {R}}\), where \(\delta _{0}(\cdot )\) is the Dirac distribution. By Fourier transform, the \(G_{t}(x)\) is given by (see, for example, [7, 10]):

$$\begin{aligned} G_{t}(x)= & {} {\mathcal {F}}^{-1}(\exp \{\Psi (\cdot )\}t)(x)\nonumber \\= & {} \frac{1}{2\pi }\int _{{\mathbb {R}}}\exp \bigg (-\mathrm{i}zx-t|z|^{\alpha }\exp \big (-\mathrm{i}\beta \frac{\pi }{2}\hbox {sgn}(z)\big )\bigg )\hbox {d}z, \end{aligned}$$
(64)

where \({\mathcal {F}}^{-1}\) is the inverse Fourier transform. Furthermore, the Fourier transform of \(G_{t}(x)\) with respect to space variable is

$$\begin{aligned} {\mathcal {F}}G_{t}(\cdot )(\xi )=\exp \left\{ -t\Psi (\xi )\right\} . \end{aligned}$$
(65)

The Green functions defined in (64) are densities of stable random variables. Some key properties are stated in the next lemma. Recall that a probability density function \(f:{\mathbb {R}}\rightarrow {\mathbb {R}}_+\) is called bell-shaped if f is infinitely differentiable and its kth derivative \(f^{(k)}\) has exactly k zeros in its support for all k. Let us collect some known facts on \(G_{t}(x)\) which will be used later (see, e.g., [7, 10] and references therein for details).

Lemma 2

Let \(\alpha \in (0,2]\), we have the following:

  1. 1.

    For fixed \(t>0\), the function \(x\mapsto G_{t}(x)\) is a bell-shaped density function. In particular, \(\int _{{\mathbb {R}}}G_{t}(x)\hbox {d}x=1\).

  2. 2.

    Semigroup property: \(G_{t}(x)\) satisfies the Chapman–Kolmogorov equation, i.e., for \(0<s<t\) and \(x\in {\mathbb {R}}\)

    $$\begin{aligned} G_{t+s}(x)=\int _{\mathbb {R}}G_{t}(y)G_{s}(x-y)\hbox {d}y \end{aligned}$$
  3. 3.

    Scaling property: For all \(n\ge 0\),

    $$\begin{aligned} \frac{\partial ^n}{\partial x^n}G_{t}(x)=t^{-\frac{n+1}{\alpha }}\frac{\partial ^n}{\partial \xi ^n}G_{1}(\xi )|_{\xi =t^{-\frac{1}{\alpha }}x}. \end{aligned}$$
  4. 4.

    If \(\alpha \in (1,2]\), then there exist finite \(K_{\alpha ,n}\) such that for all \(x\in {\mathbb {R}}\) and \(n\ge 0\),

    $$\begin{aligned} \left| \frac{\partial ^n}{\partial x^n}G_1(x)\right| \le \frac{K_{\alpha ,n}}{1+|x|^{1+n+\alpha }}. \end{aligned}$$

We need the following useful lemma which can be proved by Eq. (65).

Lemma 3

For any \(\kappa >-1\) with \(\alpha \in (0,2]\) and \(t>0\), we have

$$\begin{aligned} \int _{{\mathbb {R}}}|{\mathcal {F}}G_{t}(\cdot )(\xi )|^2|\xi |^\kappa \hbox {d}\xi =C^*t^{-\frac{1+\kappa }{\alpha }}, \end{aligned}$$
(66)

with \(C^*=\frac{2}{\alpha }\left( \frac{1}{2\cos (\beta \pi /2)}\right) ^{\frac{1+\kappa }{\alpha }} \Gamma \left( \frac{1+\kappa }{\alpha }\right) \).

Proof

According to the expression of \({\mathcal {F}}G_{t}(\cdot )(\xi )\) given by (65), using the change of variable \(x=2 t\xi ^\alpha \cos (\beta \pi /2)\), we have

$$\begin{aligned} \int _{{\mathbb {R}}}|{\mathcal {F}}G_{t}(\cdot )(\xi )|^2|\xi |^\kappa \hbox {d}\xi&=\int _{{\mathbb {R}}}\exp \{-2t|\xi |^\alpha \cos (\beta \pi /2)\}|\xi |^\kappa \hbox {d}\xi \\&=\frac{2}{\alpha }\left( \frac{1}{2\cos (\beta \pi /2)}\right) ^{\frac{1+\kappa }{\alpha }} t^{-\frac{1+\kappa }{\alpha }} \int _0^\infty e^{-u}u^{\frac{1+\kappa }{\alpha }-1}\hbox {d}u\\&=\frac{2}{\alpha }\left( \frac{1}{2\cos (\beta \pi /2)}\right) ^{\frac{1+\kappa }{\alpha }} \Gamma \left( \frac{1+\kappa }{\alpha }\right) t^{-\frac{1+\kappa }{\alpha }}, \end{aligned}$$

with \(\kappa >-1\).

\(\square \)

The next lemma is given by Lemma B.3 in [4].

Lemma 4

For any \(\varphi \in L^{1/H_0}(\mathbb {R}^n)\),

$$\begin{aligned} \int _{{\mathbb {R}}^n}\int _{{\mathbb {R}}^n}\varphi (\mathbf{t})\varphi (\mathbf{s})\prod _{j=1}^n|t_j-s_j|^{2H_0-2}\hbox {d}{} \mathbf{t}\hbox {d}{} \mathbf{s} \le C_{H_0}^n\left( \int _{{\mathbb {R}}^n} |\varphi (\mathbf {t})|^{1/H_0}\hbox {d}\mathbf {t}\right) ^{2H_0}, \end{aligned}$$
(67)

where \(C_{H_0}>0\) is a constant and we denote \(\mathbf{t}=(t_1,t_2,\ldots ,t_n)\) and \(\mathbf{s}=(s_1,s_2,\ldots ,s_n)\).

The next lemma is from Lemma 3.4 in [5].

Lemma 5

Let \(T_n(t)=\{(t_1,\ldots ,t_n):0<t_1<\cdots<t_n<t\}\) for any \(t>0\) and \(n\ge 1\). Then, for any \(\theta _1,\ldots ,\theta _n>-1\), we have

$$\begin{aligned} I_n(t,\theta _1,\ldots ,\theta _n)=\int _{T_n(t)}\prod _{j=1}^n(t_{j+1}-t_j)^{\theta _j}\hbox {d}t_1\ldots \hbox {d}t_n=\frac{\prod _{j=1}^n\Gamma (\theta _j+1)}{\Gamma (|\theta |+n+1)}t^{|\theta |+n}, \end{aligned}$$

where \(|\theta |=\sum _{j=1}^n\theta _j\) and we denote by \(t_{n+1}=t\). Consequently, if there exist \(M>\varepsilon >0\) such that \(\varepsilon <\theta _{j}+1\le M\) for all \(j=1,\ldots ,n\), then

$$\begin{aligned} I_n(t,\theta _1,\ldots ,\theta _n)\le \frac{C^n}{\Gamma (|\theta |+n+1)}t^{|\theta |+n}, \end{aligned}$$

where \(C=\sup _{x\in [\varepsilon ,M]}\Gamma (x)\).

The next lemma is borrowed from Lemma 6.3 in [27].

Lemma 6

For any \(a>0\) and \(b\in [0,1]\), we have

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\Gamma (an+b)}{(n!)^aa^{an+b-\frac{1}{2}}n^{b-\frac{1}{2}-\frac{a}{2}}}=1. \end{aligned}$$

Moreover, one has

$$\begin{aligned} C_1\exp \left\{ C_2x^{\frac{1}{a}}\right\} \le \sum _{n=0}^\infty \frac{x^n}{(n!)^a}\le C_1'\exp \left\{ C_2'x^{\frac{1}{a}}\right\} , \end{aligned}$$

where \(C_1,C_2,C_1',C_2'\) are four positive constants depending on a.

Lemma 7

Suppose \(0<\gamma <1, \phi>0, x>0\) and that X is a standard normal random variable. Then, there is a constant C, independent of x and \(\phi \) such that

$$\begin{aligned} \mathbb {E}|x+\phi X|^{-\gamma }\ge C\max \left\{ \phi ^{-\gamma },x^{-\gamma }\right\} . \end{aligned}$$

Proof

It is straightforward to check that \(K=\inf _{x\ge 0}\mathbb {E}|x+\phi X|^{-\gamma }<\infty \). Thus,

$$\begin{aligned} \mathbb {E}|x+\phi X|^{-\gamma }=\phi ^{-\gamma }\mathbb {E}\left| \frac{x}{\phi }+X\right| ^{-\gamma }\ge K\phi ^{-\gamma }. \end{aligned}$$
(68)

On the other hand,

$$\begin{aligned} \mathbb {E}|x+\phi X|^{-\gamma }&=\frac{1}{\sqrt{2\pi }}\int _{{\mathbb {R}}}|x+\phi y|^{-\gamma }e^{-\frac{y^2}{2}}\hbox {d}y\\&=\frac{1}{\sqrt{2\pi }}\int _{|x+\phi y|>\frac{x}{2}}|x+\phi y|^{-\gamma }e^{-\frac{y^2}{2}}\hbox {d}y\\&\quad +\frac{1}{\sqrt{2\pi }}\int _{|x+\phi y|\le \frac{x}{2}}|x+\phi y|^{-\gamma }e^{-\frac{y^2}{2}}\hbox {d}y\\&\ge \frac{1}{\sqrt{2\pi }}\int _{|x+\phi y|\le \frac{x}{2}}|x+\phi y|^{-\gamma }e^{-\frac{y^2}{2}}\hbox {d}y\\&\ge Cx^{-\gamma }, \end{aligned}$$

for some constant \(C>0\). Combining this with (68), we obtain the desired result in this lemma.

\(\square \)

Lemma 8

Suppose \(0<\gamma <1\). For \(\phi _1,\phi _2>0\), there is a constant \(C>0\) such that

$$\begin{aligned} \sup _{\phi _1,\phi _2>0}\int _{{\mathbb {R}}^2}p_{\phi _1}(x_1+y_1)p_{\phi _2}(x_2+y_2)|y_1-y_2|^{-\gamma }\hbox {d}y_1\hbox {d}y_2\ge C|x_1-x_2|^{-\gamma }. \end{aligned}$$

Proof

We can write

$$\begin{aligned} \int _{{\mathbb {R}}^2}p_{\phi _1}(x_1+y_1)p_{\phi _2}(x_2+y_2)|y_1-y_2|^{-\gamma }\hbox {d}y_1\hbox {d}y_2 =\mathbb {E}\left( |\phi _1 X_1-x_1-\phi _2X_2+x_2|^{-\gamma }\right) . \end{aligned}$$

Thus, this lemma follows directly from Lemma 7. \(\square \)

Lemma 9

Suppose \(0<\gamma <1\). For \(\phi _1,\phi _2>0\), there is a constant \(C>0\) such that

$$\begin{aligned} \sup _{\phi _1,\phi _2>0}\int _{0}^t\int _{0}^tf_{\phi _1}(t-s_1-r_1)f_{\phi _2}(t-s_2-r_2)|r_1-r_2|^{-\gamma }\hbox {d}r_1\hbox {d}r_2\ge C|s_1-s_2|^{-\gamma }. \end{aligned}$$

Proof

There exists a sufficient large positive number M such that

$$\begin{aligned} p_\phi (x)&=\frac{1}{\sqrt{2\pi \phi }}e^{-\frac{x^2}{2\phi }}1_{{\mathbb {R}}}(x) =\frac{1}{\sqrt{2\pi \phi }}e^{-\frac{x^2}{2\phi }}\left( 1_{[0,\sqrt{\phi }]}(x) +1_{{\mathbb {R}}/[0,\sqrt{\phi }]}(x)\right) \\&\le \frac{M}{\sqrt{2\pi \phi }}e^{-\frac{x^2}{2\phi }}1_{[0,\sqrt{\phi }]}(x)=\frac{M}{\sqrt{2\pi }}\frac{1}{\sqrt{\phi }}1_{[0,\sqrt{\phi }]}(x)=\frac{M}{\sqrt{2\pi }}f_{\sqrt{\phi }}(x). \end{aligned}$$

Thus, this lemma follows directly from Lemma 8.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. Moment Bounds for a Generalized Anderson Model with Gaussian Noise Rough in Space. J Theor Probab 36, 167–200 (2023). https://doi.org/10.1007/s10959-022-01175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-022-01175-z

Keywords

2020 Mathematics Subject Classification

Navigation