Skip to main content
Log in

Parabolic Anderson Model with Space-Time Homogeneous Gaussian Noise and Rough Initial Condition

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, we study the parabolic Anderson model driven by a space-time homogeneous Gaussian noise on \(\mathbb {R}_{+} \times \mathbb {R}^d\), whose covariance kernels in space and time are locally integrable nonnegative functions which are nonnegative definite (in the sense of distributions). We assume that the initial condition is given by a signed Borel measure on \(\mathbb {R}^d\), and the spectral measure of the noise satisfies Dalang’s (Electron J Probab 4(6):29, 1999) condition. Under these conditions, we prove that this equation has a unique solution, and we investigate the magnitude of the p-th moments of the solution, for any \(p \ge 2\). In addition, we show that this solution has a Hölder continuous modification with the same regularity and under the same condition as in the case of the white noise in time, regardless of the temporal covariance function of the noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balan, R.M., Conus, D.: Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab. 44, 1488–1534 (2016)

    Article  MathSciNet  Google Scholar 

  2. Balan, R.M., Song, J.: Hyperbolic Anderson model with space-time homogeneous Gaussian noise. Preprint available on arXiv:1602.07004 (2016)

  3. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)

    Article  MathSciNet  Google Scholar 

  4. Carmona, R.A., Molchanov, S.A.: Parabolic Anderson problem and intermittency. Mem. Am. Math. Soc. 108, 518 (1994)

    MathSciNet  MATH  Google Scholar 

  5. Chen, L., Dalang, R.C.: Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch. Partial Differ. Equ. Anal. Comput. 2(3), 316–352 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Chen, L., Dalang, R.C.: Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab. 43(6), 3006–3051 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Dalang, R.C.: Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. Stoch. Partial Differ. Equ. Anal. Comput. 3(3), 360–397 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Chen, L., Huang, J.: Comparison principle for stochastic heat equation on \({\mathbb{R}}^d\). Preprint available on arXiv:1607.03998 (2016)

  9. Chen, L., Hu, G., Hu, Y., Huang, J.: Space-time fractional diffusions in Gaussian noisy environment. Stochastics 89, 171–206 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chen, L., Kim, K.: Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency. Preprint available on arXiv:1510.06046 (2015)

  11. Dalang, R.C.: Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e’.s. Electron. J. Probab. 4(6), 29 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Dalang, R.C., Mueller, C.: Intermittency properties in a hyperbolic Anderson model. Ann. Inst. Henri Poincaré Probab. Stat. 45, 1150–1164 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dalang, R., Sanz-Solé, M.: Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Memoirs AMS 931 (2009)

  14. Foondun, M., Khoshnevisan, D.: Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14(21), 548–568 (2009)

    Article  MathSciNet  Google Scholar 

  15. Hu, Y., Nualart, D.: Stochastic heat equation driven by fractional noise and local time. Probab. Theory Relat. Fields 143, 285–328 (2009)

    Article  MathSciNet  Google Scholar 

  16. Hu, Y., Huang, J., Nualart, D., Tindel, S.: Stochastic heat equations with general multiplicative noises: Hölder continuity and intermittency. Electron. J. Probab. 20(55), 50 (2015)

    MATH  Google Scholar 

  17. Huang, J., Lê, K., Nualart, D.: Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise. Preprint arXiv:1509.00897v2 (2015)

  18. Janson, S.: Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  19. Nualart, D.: Malliavin Calculus (Second edition) Probability and its Applications (New York). Springer, Berlin (2006)

    Google Scholar 

  20. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC (2010)

    MATH  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press Inc., San Diego (1999)

    MATH  Google Scholar 

  22. Sanz-Solé, M., Mònica, S.: Hölder continuity for the stochastic heat equation with spatially correlated noise. Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), pp. 259–268, Progr. Probab. 52, Birkhäuser, Basel (2002)

  23. Sanz-Solé, M., Süß, A.: Absolute continuity for SPDEs with irregular fundamental solution. Electron. Commun. Probab. 20(14), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for reading the paper very carefully, and for pointing out several typos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raluca M. Balan.

Additional information

Raluca M. Balan: Research supported by a Grant from the Natural Sciences and Engineering Research Council of Canada.

Appendices

Appendix A: A Technical Lemma

Lemma A.1

If \(H:[0,\infty ) \rightarrow [0,\infty )\) is a non-decreasing function such that

$$\begin{aligned} \gamma :=\inf \left\{ \beta >0:\, \int _0^\infty \mathrm {e}^{-\beta t} H(t)\mathrm {d}t<\infty \right\} <\infty , \end{aligned}$$

then

$$\begin{aligned} \limsup _{t\rightarrow \infty }\frac{1}{t}\log H(t)\le \gamma . \end{aligned}$$

Proof

We will prove this lemma by contradiction. Suppose that \(\limsup _{t\rightarrow \infty }t^{-1}\log H(t)>\gamma \). Then there exist \(\epsilon _0>0\) and a non-decreasing sequence \(\{t_n\}_{n\ge 1}\) such that \(0\le t_n\uparrow \infty \) as \(n\rightarrow \infty \) and

$$\begin{aligned} \log H(t_n)\ge t_n(\gamma +\epsilon _0),\quad \text {for all }n\ge 1. \end{aligned}$$

Moreover, we assume that \(t_n \ge s_{n-1}^*\) for a certain sequence \((s_n^*)_{n \ge 1}\) which will be constructed below. By definition of \(\gamma \), we have that

$$\begin{aligned} \int _{0}^\infty \mathrm {e}^{-(\gamma +\epsilon ) t}H(t)\mathrm {d}t<\infty ,\quad \text {for all }\epsilon >0. \end{aligned}$$
(A.1)

We claim that there exits \(s_1>t_1\) such that \(H(s_1)\le \mathrm {e}^{(\gamma +\epsilon _0/2)s_1}\). If this is not true, then

$$\begin{aligned} H(t)1_{\{t> t_1\}}> \mathrm {e}^{(\gamma +\epsilon _0/2) t}1_{\{t>t_1\}}, \end{aligned}$$

which leads to the following contradiction with (A.1):

$$\begin{aligned} \int _{t_1}^\infty \mathrm {e}^{-(\gamma +\epsilon _0/4) t}H(t)\mathrm {d}t \ge \int _{t_1}^\infty \mathrm {e}^{-(\gamma +\epsilon _0/4) t}\mathrm {e}^{(\gamma +\epsilon _0/2) t}\mathrm {d}t = \infty . \end{aligned}$$

Let \(r_1=\inf \{s_1>t_1; H(s_1) \le e^{(\gamma +\epsilon _0/2)s_1} \}\). Then \(H(t) > e^{(\gamma +\epsilon _0/2)t}\) for any \(t \in [t_1,r_1)\). Since H(t) is non-decreasing and \(H(t_1) \ge e^{(\gamma +\epsilon _0)t_1}\), the smallest possible value for \(r_1\) is obtained in the case when the function H(t) is constant with value equal to \(\mathrm {e}^{(\gamma +\epsilon _0)t_1}\) starting from \(t_1\) until it crosses the function \(\mathrm {e}^{(\gamma +\epsilon _0/2)t}\). In this case, \(r_1=s_1^*\) where \(\mathrm {e}^{(\gamma +\epsilon _0/2)s_1^*} = \mathrm {e}^{(\gamma +\epsilon _0)t_1}\). For a general non-decreasing function \(H, r_1 \ge s_1^*\). Hence,

$$\begin{aligned} H(t) 1_{\{t\in [t_1,s_1^*]\}} \ge \mathrm {e}^{(\gamma +\epsilon _0/2)t_1} 1_{\{t\in [t_1,s_1^*]\}}, \quad \text {with }s_1^*=\left( 1+\frac{\epsilon _0}{2\gamma +\epsilon _0}\right) t_1. \end{aligned}$$

We now select \(t_2\) such that \(t_2>s_1^*\) and \(t_2 \ge t_1\). In the same way, we have that

$$\begin{aligned} H(t) 1_{\{t\in [t_2,s_2^*]\}} \ge \mathrm {e}^{(\gamma +\epsilon _0/2)t_2} 1_{\{t\in [t_2,s_2^*]\}}, \quad \text {with } s_2=\left( 1+\frac{\epsilon _0}{2\gamma +\epsilon _0}\right) t_2. \end{aligned}$$

In this way, we can find a sequence of disjoint nonempty intervals \(\{[t_n,s_n^*] \}_{n\ge 1}\) such that

$$\begin{aligned} H(t) 1_{\{t\in [t_n,s_n^*]\}} \ge \mathrm {e}^{(\gamma +\epsilon _0/2)t_n} 1_{\{t\in [t_n,s_n^*]\}}, \quad \text {with } s_n^*=\left( 1+\frac{\epsilon _0}{2\gamma +\epsilon _0}\right) t_n, \end{aligned}$$

for all \(n\ge 1\). Now we have that

$$\begin{aligned} \int _{0}^\infty \mathrm {e}^{-(\gamma +\epsilon _0/2) t}H(t)\mathrm {d}t&\ge \sum _{n=1}^\infty \int _{t_n}^{s_n^*} \mathrm {e}^{-(\gamma +\epsilon _0/2) t}\mathrm {e}^{(\gamma +\epsilon _0/2) t_n}\mathrm {d}t\\&= \sum _{n=1}^\infty \frac{1}{\gamma +\epsilon _0/2}\left( 1-\mathrm {e}^{-(\gamma +\epsilon _0/2)(s_n^*-t_n)} \right) \\&= \sum _{n=1}^\infty \frac{1}{\gamma +\epsilon _0/2}\left( 1-\mathrm {e}^{-(\gamma +\epsilon _0/2)\frac{\epsilon _0 t_n}{2\gamma +\epsilon _0}}\right) \\&\ge \sum _{n=1}^\infty \frac{2}{2\gamma +\epsilon _0}\left( 1-\mathrm {e}^{-(\gamma +\epsilon _0/2)\frac{\epsilon _0 t_1}{2\gamma +\epsilon _0}}\right) =\infty , \end{aligned}$$

which contradicts with (A.1). This proves Lemma A.1. \(\square \)

Appendix B: Continuity of \(J_n\) in \(L^p(\Omega )\)

The following result is an extension of Proposition A.3 of [6] to higher dimensions d.

Proposition B.1

Fix \((t,x)\in (0,\infty )\times \mathbb {R}^d\). Set

$$\begin{aligned} B_{t,x}:=\left\{ \left( t',x'\right) \in (0,\infty ) \times \mathbb {R}^d:\, 0< t'\le t+\frac{1}{2}\,,\,\, \left| x'-x\right| \le 1 \right\} \end{aligned}$$

Then there exists \(a=a_{t,x}>0\) such that for all \(\left( t',x'\right) \in B_{t,x}\) and all \(s\in [0,t']\) and \(y \in \mathbb {R}^d\) with \(|y|\ge a\),

$$\begin{aligned} G(t'-s,x'-y) \le G(t+1-s,x-y)\,. \end{aligned}$$
(B.1)

Proof

By direct calculation, we see that inequality (B.1) is equivalent to

$$\begin{aligned} \sum _{i=1}^d \left( -\frac{(x'_i-y_i)^2}{t'-s} +\frac{(x_i-y_i)^2}{t+1-s}\right) \le d \, \log \left( \frac{t'-s}{t+1-s}\right) , \end{aligned}$$
(B.2)

where \(x=(x_1,\ldots ,x_d), x'=(x_1',\ldots ,x_d')\) and \(y=(y_1,\ldots ,y_d)\).

We fix (tx). In order to find \(a=a_{t,x}\), we will freeze \(d-1\) coordinates. Because

$$\begin{aligned} -\frac{(x'_i-y_i)^2}{t'-s} +\frac{(x_i-y_i)^2}{t+1-s}&=-\frac{1+t-t'}{(1+t-s)(t'-s)}\\&\quad \left( y-\frac{x'(1+t-s)-x(t'-s)}{1+t-t'}\right) ^2 +\frac{(x_i-x_i')^2}{1+t-t'} \\&\quad \le \frac{(x_i-x_i')^2}{1+t-t'} \le 2(x_i-x_i')^2\le 2, \end{aligned}$$

we have

$$\begin{aligned}&\sum _{i=1}^d \left( -\frac{(x'_i-y_i)^2}{t'-s} +\frac{(x_i-y_i)^2}{t+1-s}\right) \\&\quad \le 2(d-1) +\left( -\frac{(x'_j-y_j)^2}{t'-s} +\frac{(x_j-y_j)^2}{t+1-s}\right) . \end{aligned}$$

for any index \(j=1, \ldots ,d\). Hence, inequality (B.2) holds, provided that there exists an index \(j=1, \ldots ,d\) such that

$$\begin{aligned} -\frac{(x'_j-y_j)^2}{t'-s} +\frac{(x_j-y_j)^2}{t+1-s} \le d \, \log \left( \frac{t'-s}{t+1-s}\right) - 2(d-1)\;. \end{aligned}$$
(B.3)

This shows that condition (B.2) holds, if for some index \(j=1,\ldots ,d\), we have:

$$\begin{aligned} -\frac{(x'_j-y_j)^2}{t'-s} +\frac{(x_j-y_j)^2}{t+1-s} \le 2 d \, \log \left( \frac{t'-s}{t+1-s}\right) \;, \end{aligned}$$
(B.4)

and

$$\begin{aligned} -\frac{(x'_j-y_j)^2}{t'-s} +\frac{(x_j-y_j)^2}{t+1-s}\le -4(d-1). \end{aligned}$$
(B.5)

By Proposition A.3 of [6], there exists a constant \(a_1=a_{1,t,x}>0\) such that (B.4) and (B.5) hold for any \((t',x_j')\) with \(0<t' \le t+1/2\) and \(|x_j'-x_j| \le 1\), and for any \(y_j \in \mathbb {R}\) with \(|y_j|>a_1\).

Let \(a:=a_1 \sqrt{d}\). Note that \(\{y\in \mathbb {R}^d: |y|\ge a \} \subset \bigcup _{j=1}^d B_j\), where

$$\begin{aligned} B_j=\left\{ y=(y_1,\ldots ,y_d) \in \mathbb {R}^d: |y_j|\ge a_1 \right\} , \quad j=1,\ldots ,d. \end{aligned}$$

Therefore, for any \(y\in \mathbb {R}^d\) with \(|y|\ge a\), there exists an index \(j=1,\ldots ,d\) such that \(|y_j|\ge a_1\). As we have shown above, this means that condition (B.2) holds for this y, for any \((t',x') \in B_{t,x}\). \(\square \)

Lemma B.2

\(J_0\) is continuous on \((0,\infty ) \times \mathbb {R}^d\).

Proof

Fix \(t>0\) and \(x \in \mathbb {R}^d\). By the definition of \(J_0\), we have:

$$\begin{aligned} |J_0(t,x)-J_0(t',x')| \le \int _{\mathbb {R}^d}|G(t,x-y)-G(t',x'-y)|\,|u_0|(\mathrm {d}y)=:L(t,t',x,x'). \end{aligned}$$

We claim that:

$$\begin{aligned} \lim _{(t',x') \rightarrow (t,x)}L(t,t',x,x')=0. \end{aligned}$$
(B.6)

To see this, we write \(L(t,t',x,x')=L_1(t,t',x,x')+L_2(t,t',x,x')\) where

$$\begin{aligned} L_1(t,t',x,x')&= \int _{|y| \ge a}|G(t,x-y)-G(t',x'-y)|\,|u_0|(\mathrm {d}y), \quad \text {and}\\ L_2(t,t',x,x')&= \int _{|y|<a}|G(t,x-y)-G(t',x'-y)|\,|u_0|(\mathrm {d}y), \end{aligned}$$

and \(a=a_{t,x}\) is the constant given by Proposition B.1. By enlarging a if necessary, we may assume that \(t>1/a\). By the dominated convergence theorem and the continuity of the function G, we see that \(L_i(t,t',x,x') \rightarrow 0\) when \((t',x') \rightarrow (t,x)\), for \(i=1,2\). To justify the application of this theorem, we argue as follows. For \(L_1(t,t',x,x')\), we use Proposition B.1 to infer that for any \((t',x') \in B_{t,x}\) and for any \(y \in \mathbb {R}^d\) with \(|y| \ge a\), we have:

$$\begin{aligned} |G(t,x-y)-G(t',x'-y)| \le 2 G(t+1,x-y). \end{aligned}$$

For \(L_2(t,t',x,x')\), we use the fact that for any \(t'>1/a, x' \in \mathbb {R}^d\) and \(y\in \mathbb {R}^d\) with \(|y| \le a\),

$$\begin{aligned} \frac{G(t',x'-y)}{G(t,x-y)}= & {} \frac{\sqrt{t}}{\sqrt{t'}}\exp \left( -\frac{(x'-y)^2}{2t'}+\frac{(x-y)^2}{2t} \right) \\\le & {} \frac{\sqrt{t}}{\sqrt{1/a}}\exp \left( \frac{|x|^2+|a|^2}{t}\right) =:C_{t,x}, \end{aligned}$$

and hence \(|G(t',x'-y)-G(t,x-y)| \le (C_{t,x}+1)G(t,x-y)\). \(\square \)

Lemma B.3

For any \(p \ge 2\) and \(n \ge 1, J_n\) is \(L^p(\Omega )\)-continuous on \((0,\infty ) \times \mathbb {R}^d\).

Proof

We proceed as in the proof of Lemma 3.6 of [2]. We divide the proof in three steps.

Step 1. (right-continuity in time) We will prove that for any \(t>0\) and \(a>0\),

$$\begin{aligned} \lim _{h \downarrow 0}\Vert J_n(t+h,x)-J_n(t,x)\Vert _p=0 \quad \text{ uniformly } \text{ in } \ x \in [-a,a]^d. \end{aligned}$$
(B.7)

For any \(h>0\), we have:

$$\begin{aligned} \Vert J_n(t+h,x)-J_n(t,x)\Vert _p^2\le & {} (p-1)^n \Vert J_n(t+h,x)-J_n(t,x)\Vert _2^2 \nonumber \\= & {} (p-1)^n n! \, \Vert \widetilde{f}_n(\cdot ,t+h,x)-\widetilde{f}_n(\cdot ,t,x)\Vert _{\mathcal {H}^{\otimes n}}^2 \nonumber \\\le & {} \frac{2}{n!} \left( A_n(t,x,h)+B_n(t,x,h) \right) , \end{aligned}$$
(B.8)

where

$$\begin{aligned} A_n(t,x,h)&= (n!)^2 \Vert \widetilde{f}_n(\cdot ,t+h,x)1_{[0,t]^{n}}-\widetilde{f}_n(\cdot ,t,x) \Vert _{\mathcal {H}^{\otimes n}}^{2}, \end{aligned}$$
(B.9)
$$\begin{aligned} B_n(t,x,h)&= (n!)^2 \Vert \widetilde{f}_n(\cdot ,t+h,x)1_{[0,t+h]^{n}\setminus [0,t]^n} \Vert _{\mathcal {H}^{\otimes n}}^{2}. \end{aligned}$$
(B.10)

We evaluate \(A_n(t,h,x)\) first. We have:

$$\begin{aligned} A_n(t,h,x) = \int _{[0,t]^{2n}} \prod _{j=1}^{n}\gamma (t_j-s_j) \psi _{t,h,x}^{(n)}(\mathbf{t}, \mathbf{s})\mathrm {d}\mathbf{t} \mathrm {d}\mathbf{s}, \end{aligned}$$

where

$$\begin{aligned} \psi _{t,h,x}^{(n)}(\mathbf{t},\mathbf{s})&=\frac{1}{(2\pi )^{nd}}\int _{\mathbb {R}^{nd}} \mathcal {F}(g_{\mathbf{t},t+h,x}^{(n)}-g_{\mathbf{t},t,x}^{(n)}) (\xi _1,\ldots ,\xi _n) \\&\quad \times \overline{\mathcal {F}(g_{\mathbf{s},t+h,x}^{(n)}-g_{\mathbf{s},t,x}^{(n)}) (\xi _1, \ldots ,\xi _n)} \,\, \mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n). \end{aligned}$$

Similarly to (3.4), we have:

$$\begin{aligned} A_n(t,h,x) \le \Gamma _t^n \int _{[0,t]^n}\psi _{t,h,x}^{(n)}(\mathbf{t},\mathbf{t})\mathrm {d}\mathbf{t}=\Gamma _t^n \sum _{\rho \in S_n}\int _{0<t_{\rho (1)}<\cdots<t_{\rho (n)}<t}\psi _{t,h,x}^{(n)}(\mathbf{t},\mathbf{t})\mathrm {d}\mathbf{t}. \end{aligned}$$
(B.11)

If \(t_{\rho (1)}<\cdots<t_{\rho (n)}<t=:t_{\rho (n+1)}\), then by (3.5),

$$\begin{aligned}&|\mathcal {F}(g_{\mathbf{t},t+h,x}^{(n)}-g_{\mathbf{t},t,x}^{(n)}) (\xi _1,\ldots ,\xi _n) |^2 \\&\quad \le \lambda ^{2n} J_+^2(t,x) \prod _{k=1}^{n-1} \exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)} t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)} \xi _{\rho (j)} \right| ^2 \right) \\&\quad \left| \exp \left( -\frac{1}{2}\frac{t+h-t_{\rho (n)}}{t_{\rho (n)}(t+h)} \left| \sum _{j=1}^{n}t_{j} \xi _{j} \right| ^2 \right) -\exp \left( -\frac{1}{2}\frac{t-t_{\rho (n)}}{t_{\rho (n)}t} \left| \sum _{j=1}^{n}t_{j} \xi _{j} \right| ^2 \right) \right| ^2 \\&\quad = \lambda ^{2n} J_+^2(t,x) \prod _{k=1}^{n} \exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)} t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)} \xi _{\rho (j)} \right| ^2 \right) \\&\quad \left[ 1-\exp \left( -\frac{h}{2t(t+h)}\left| \sum _{j=1}^{n}t_j \xi _j\right| ^2 \right) \right] ^2, \end{aligned}$$

and hence

$$\begin{aligned} \psi _{t,h,x}^{(n)}(\mathbf{t},\mathbf{t})&\le \Gamma _t^n J_+^2(t,x) \frac{1}{(2\pi )^{nd}}\int _{\mathbb {R}^{nd}} \prod _{k=1}^{n} \exp \nonumber \\&\quad \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)} t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)} \xi _{\rho (j)} \right| ^2 \right) \nonumber \\&\quad \times \left[ 1-\exp \left( -\frac{h}{2t(t+h)}\left| \sum _{j=1}^{n}t_j \xi _j\right| ^2 \right) \right] ^2 \mu (\mathrm {d}\xi _1)\ldots \mu _n(\mathrm {d}\xi _n). \end{aligned}$$
(B.12)

Using (B.11) and (B.12), it follows that

$$\begin{aligned} A_n(t,h,x)&\le \Gamma _t^n \lambda ^{2n}J_+^2(t,x) n! \frac{1}{(2\pi )^{nd}} \int _{0<t_1<\cdots<t_n<t} \int _{\mathbb {R}^{nd}} \prod _{k=1}^{n}\exp \nonumber \\&\quad \left( -\frac{t_{k+1}-t_k}{t_k t_{k+1}} \left| \sum _{j=1}^{k}t_j \xi _j \right| ^2\right) \nonumber \\&\quad \times \left[ 1-\exp \left( -\frac{h}{2t(t+h)}\left| \sum _{j=1}^{n}t_j \xi _j\right| ^2 \right) \right] ^2 \nonumber \\&\quad \mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n) \mathrm {d}t_1 \ldots \mathrm {d}t_n, \end{aligned}$$
(B.13)

with the convention \(t_{n+1}=t\). By the dominated convergence theorem and (3.20), we conclude that

$$\begin{aligned} \lim _{h \downarrow 0}A_n(t,h,x)= 0 \quad \text{ uniformly } \text{ in } x \in [-a,a]^d. \end{aligned}$$
(B.14)

As for \(B_n(t,h,x)\), note that

$$\begin{aligned} B_n(t,h,x) =\int _{[0,t+h]^{2n}} \prod _{j=1}^{n}\gamma (t_j-s_j) \gamma _{t,h,x}^{(n)}(\mathbf{t}, \mathbf{s})1_{D_{t,h}}(\mathbf{t}) 1_{D_{t,h}}(\mathbf{s})\mathrm {d}\mathbf{t} d\mathbf{s}, \end{aligned}$$

where

figure a

and

$$\begin{aligned} \gamma _{t,h,x}^{(n)}(\mathbf{t},\mathbf{s})= & {} \frac{1}{(2\pi )^{nd}}\int _{\mathbb {R}^{nd}} \mathcal {F}g_{\mathbf{t},t+h,x}^{(n)}(\xi _1, \ldots ,\xi _n)\\&\overline{\mathcal {F}g_{\mathbf{s},t+h,x}^{(n)}(\xi _1, \ldots ,\xi _n)} \mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n). \end{aligned}$$

Similarly to (46) of [2], it can be proved that

$$\begin{aligned} B_n(t,h,x) \le \Gamma _{t+h}^n \int _{[0,t+h]^n} \gamma _{t,h,x}^{(n)}(\mathbf{t},\mathbf{t})1_{D_{t,h}}(\mathbf{t})\mathrm {d}\mathbf{t}. \end{aligned}$$
(B.15)

If \(t_{\rho (1)}<\cdots<t_{\rho (n)}<t+h\), then by (3.5),

$$\begin{aligned}&|\mathcal {F}g_{\mathbf{t},t+h,x}(\xi _1,\ldots ,\xi _n)|^2 \\&\quad \le \lambda ^{2n} J_+^2(t,x) \prod _{k=1}^{n-1}\exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)}t_{\rho (k+1)}} \left| \sum _{j=1}^k t_{\rho (j)}\xi _{\rho (j)} \right| ^2\right) \\&\quad \quad \times \exp \left( -\frac{t+h-t_{\rho (n)}}{(t+h)t_{\rho (n)}} \left| \sum _{j=1}^n t_{j}\xi _{j} \right| ^2\right) , \end{aligned}$$

and hence, by Lemma 3.4

$$\begin{aligned} \gamma _{t,h,x}^{(n)}(\mathbf{t},\mathbf{t})&\le \lambda ^{2n}J_+^2(t,x) \frac{1}{(2\pi )^{nd}}\int _{\mathbb {R}^{nd}}\prod _{k=1}^{n-1}\exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)}t_{\rho (k+1)}} \left| \sum _{j=1}^k t_{\rho (j)}\xi _{\rho (j)} \right| ^2\right) \nonumber \\&\quad \times \exp \left( -\frac{t+h-t_{\rho (n)}}{(t+h)t_{\rho (n)}} \left| \sum _{j=1}^n t_{j}\xi _{j} \right| ^2\right) \mu (\mathrm {d}\xi _1) \ldots \mu _n(\mathrm {d}\xi _n) \nonumber \\&\le \lambda ^{2n} J_+^2(t,x) \frac{1}{(2\pi )^{nd}} \prod _{k=1}^{n-1} \int _{\mathbb {R}^d} \exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)}t_{\rho (k+1)}} \left| t_{\rho (k)}\xi _{k} \right| ^2\right) \mu (\mathrm {d}\xi _k) \nonumber \\&\quad \times \int _{\mathbb {R}^d}\exp \left( -\frac{t+h-t_{\rho (n)}}{(t+h)t_{\rho (n)}} \left| t_{\rho (n)}\xi _{n} \right| ^2\right) \mu (\mathrm {d}\xi _n). \end{aligned}$$
(B.16)

Using relations (B.15) and (B.16), and the fact that

$$\begin{aligned} D_{t,h}=\bigcup _{\rho \in S_n}\{(t_1,\ldots ,t_n);0<t_{\rho (1)}<\cdots<t_{\rho (n)}<t+h, \, t_{\rho (n)}>t\}, \end{aligned}$$

we obtain that

$$\begin{aligned} B_n(t,h,x)&\le \Gamma _{t+h}^n \sum _{\rho \in S_n} \int _{t}^{t+h} \int _{0<t_{\rho (1)}<\cdots<t_{\rho (n-1)}<t_{\rho (n)}}\nonumber \\&\quad \gamma _{t,h,x}^{(n)}(\mathbf{t},\mathbf{t})\mathrm {d}t_{\rho (1)} \ldots \mathrm {d}t_{\rho (n-1)} \mathrm {d}t_{\rho (n)} \nonumber \\&\le \Gamma _{t+h}^n \lambda ^{2n} J_+^2(t,x) n! \, \frac{1}{(2\pi )^{nd}} \int _{t}^{t+h} \int _{0<t_{1}<\cdots<t_{n-1}<t_{n}} \nonumber \\&\quad \prod _{k=1}^{n-1} \int _{\mathbb {R}^d} \exp \left( -\frac{t_{k+1}-t_{k}}{t_{k}t_{k+1}} \left| t_{k}\xi _{k} \right| ^2\right) \mu (\mathrm {d}\xi _k)\nonumber \\&\quad \times \int _{\mathbb {R}^d}\exp \left( -\frac{t+h-t_{n}}{(t+h)t_{n}} \left| t_{n}\xi _{n} \right| ^2\right) \mu (\mathrm {d}\xi _n) \mathrm {d}t_{1} \ldots \mathrm {d}t_{n-1} \mathrm {d}t_{n} \nonumber \\&= \Gamma _{t+h}^n \lambda ^{2n} J_+^2(t,x) n! \, \int _{t}^{t+h} \int _{0<t_{1}<\cdots<t_{n-1}<t_{n}} J_{t_n}^{(n-1)}(t_1,\ldots ,t_{n-1}) k\nonumber \\&\quad \left( \frac{2(t+h-t_n)t_n}{t+h}\right) \mathrm {d}t_n \nonumber \\&\le \Gamma _{t+h}^n \lambda ^{2n} J_+^2(t,x) n! \, 2^{n-1}\int _{t}^{t+h}h_{n-1}(t_n) k\left( \frac{2(t+h-t_n)t_n}{t+h}\right) \mathrm {d}t_n \nonumber \\&= \Gamma _{t+h}^n \lambda ^{2n}J_+^2(t,x) n! \, 2^{n-1}\int _{0}^{h}h_{n-1}(t+s) k\left( \frac{2(h-s)(t+s)}{t+h}\right) \mathrm {d}s \nonumber \\&\le \Gamma _{t+h}^n \lambda ^{2n} J_+^2(t,x) n! \, 2^{n-1} h_{n-1}(t+h) \int _0^h k \left( \frac{2(h-s)t}{t+h} \right) \mathrm {d}s \end{aligned}$$
(B.17)

where the second last inequality is due to Lemma 3.6, and for the last inequality we used the fact that \(h_{n-1}\) is non-decreasing and k is non-increasing. By the dominated convergence theorem and (3.20), we infer that

$$\begin{aligned} \lim _{h \downarrow 0}B_n(t,h,x) = 0 \quad \text{ uniformly } \text{ in } x \in [-a,a]^d. \end{aligned}$$
(B.18)

Relation (B.7) follows from (B.8), (B.14) and (B.18).

Step 2. (left-continuity in time) We will prove that for any \(t>0\) and \(a>0\),

$$\begin{aligned} \lim _{h \downarrow 0}\Vert J_n(t-h,x)-J_n(t,x)\Vert _p=0 \quad \text{ uniformly } \text{ in } \ x \in [-a,a]^d. \end{aligned}$$
(B.19)

For any \(h>0\), we have:

$$\begin{aligned} \Vert J_n(t-h,x)-J_n(t,x)\Vert _p^2\le & {} (p-1)^n \Vert J_n(t-h,x)-J_n(t,x)\Vert _2^2 \nonumber \\= & {} (p-1)^n n! \, \Vert \widetilde{f}_n(\cdot ,t-h,x)-\widetilde{f}_n(\cdot ,t,x)\Vert _{\mathcal {H}^{\otimes n}}^2 \nonumber \\\le & {} \frac{2}{n!} \left( A_n'(t,x,h)+B_n'(t,x,h) \right) , \end{aligned}$$
(B.20)

where

$$\begin{aligned} A_n'(t,x,h)= (n!)^2 \Vert \widetilde{f}_n(\cdot ,t-h,x)-\widetilde{f}_n(\cdot ,t,x) 1_{[0,t-h]^n}\Vert _{\mathcal {H}^{\otimes n}}^{2}, \end{aligned}$$
(B.21)
$$\begin{aligned} B_n'(t,x,h)= (n!)^2 \Vert \widetilde{f}_n(\cdot ,t,x)1_{[0,t]^{n}\setminus [0,t-h]^n} \Vert _{\mathcal {H}^{\otimes n}}^{2}. \end{aligned}$$
(B.22)

We evaluate \(A_n'(t,h,x)\) first. We have:

$$\begin{aligned} A_n'(t,h,x) = \int _{[0,t-h]^{2n}} \prod _{j=1}^{n}\gamma (t_j-s_j) \psi _{t,h,x}^{(n)'}(\mathbf{t}, \mathbf{s})\mathrm {d}\mathbf{t} \mathrm {d}\mathbf{s}, \end{aligned}$$

where

$$\begin{aligned} \psi _{t,h,x}^{(n)}(\mathbf{t},\mathbf{s})'&=\frac{1}{(2\pi )^{nd}}\int _{\mathbb {R}^{nd}} \mathcal {F}(g_{\mathbf{t},t,x}^{(n)}-g_{\mathbf{t},t-h,x}^{(n)}) (\xi _1,\ldots ,\xi _n) \\&\quad \times \overline{\mathcal {F}(g_{\mathbf{s},t,x}^{(n)}-g_{\mathbf{s},t-h,x}^{(n)}) (\xi _1, \ldots ,\xi _n)}\mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n). \end{aligned}$$

Similarly to (3.4), we have:

$$\begin{aligned} A_n'(t,h,x)\le & {} \Gamma _{t-h}^n \int _{[0,t-h]^n}\psi _{t,h,x}^{(n)'}(\mathbf{t},\mathbf{t})\mathrm {d}\mathbf{t}\nonumber \\= & {} \Gamma _{t-h}^n \sum _{\rho \in S_n}\int _{0<t_{\rho (1)}<\cdots<t_{\rho (n)}<t-h}\psi _{t,h,x}^{(n)'}(\mathbf{t},\mathbf{t})\mathrm {d}\mathbf{t}. \end{aligned}$$
(B.23)

If \(t_{\rho (1)}<\cdots<t_{\rho (n)}<t-h\), then by (3.5),

$$\begin{aligned}&|\mathcal {F}(g_{\mathbf{t},t,x}^{(n)}-g_{\mathbf{t},t-h,x}^{(n)}) (\xi _1,\ldots ,\xi _n) |^2 \\&\quad \le \lambda ^{2n} J_+^2(t,x) \prod _{k=1}^{n-1} \exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)} t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)} \xi _{\rho (j)} \right| ^2 \right) \\&\quad \quad \times \left| \exp \left( -\frac{1}{2}\frac{t-t_{\rho (n)}}{tt_{\rho (n)}} \left| \sum _{j=1}^{n}t_{j} \xi _{j} \right| ^2 \right) -\exp \left( -\frac{1}{2}\frac{t-h-t_{\rho (n)}}{(t-h)t_{\rho (n)}} \left| \sum _{j=1}^{n}t_{j} \xi _{j} \right| ^2 \right) \right| ^2 \\&\quad = \lambda ^{2n} J_+^2(t,x) \prod _{k=1}^{n} \exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)} t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)} \xi _{\rho (j)} \right| ^2 \right) \\&\quad \quad \times \exp \left( -\frac{t-h-t_{\rho (n)}}{(t-h)t_{\rho (n)}}\left| \sum _{j=1}^n t_j \xi _j \right| ^2 \right) \left[ 1-\exp \left( -\frac{h}{2t(t-h)}\left| \sum _{j=1}^{n}t_j \xi _j\right| ^2 \right) \right] ^2, \end{aligned}$$

and hence

$$\begin{aligned} \psi _{t,h,x}^{(n)'}(\mathbf{t},\mathbf{t})&\le \Gamma _t^n J_+^2(t,x) \frac{1}{(2\pi )^{nd}}\int _{\mathbb {R}^{nd}} \prod _{k=1}^{n-1} \exp \left( -\frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)} t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)} \xi _{\rho (j)} \right| ^2 \right) \nonumber \\&\quad \times \exp \left( -\frac{t-h-t_{\rho (n)}}{(t-h)t_{\rho (n)}}\left| \sum _{j=1}^n t_j \xi _j \right| ^2 \right) \nonumber \\&\quad \times \left[ 1-\exp \left( -\frac{h}{2t(t-h)}\left| \sum _{j=1}^{n}t_j \xi _j\right| ^2 \right) \right] ^2 \mu (\mathrm {d}\xi _1)\ldots \mu _n(\mathrm {d}\xi _n). \end{aligned}$$
(B.24)

It follows that

$$\begin{aligned} A_n'(t,h,x)&\le \Gamma _t^n \lambda ^{2n}J_+^2(t,x) n! \frac{1}{(2\pi )^{nd}} \int _{0<t_1<\cdots<t_n<t-h} \int _{\mathbb {R}^{nd}}\nonumber \\&\quad \prod _{k=1}^{n-1}\exp \left( -\frac{t_{k+1}-t_k}{t_k t_{k+1}} \left| \sum _{j=1}^{k}t_j \xi _j \right| ^2\right) \nonumber \\&\quad \times \exp \left( -\frac{t-h-t_{n}}{(t-h)t_{n}}\left| \sum _{j=1}^n t_j \xi _j \right| ^2 \right) \nonumber \\&\quad \times \left[ 1-\exp \left( -\frac{h}{2t(t-h)}\left| \sum _{j=1}^{n}t_j \xi _j\right| ^2 \right) \right] ^2 \nonumber \\&\quad \mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n) \mathrm {d}t_1 \ldots \mathrm {d}t_n, \end{aligned}$$
(B.25)

We will now prove that

$$\begin{aligned} \lim _{h \downarrow 0}A_n'(t,h,x)= 0 \quad \text{ uniformly } \text{ in } x \in [-a,a]^d. \end{aligned}$$
(B.26)

For this, we assume that \(h\in [0,t/2]\). Notice that:

$$\begin{aligned}&\exp \left( -\frac{t-h-t_n}{(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \left[ 1-\exp \left( -\frac{h}{2t(t-h)}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \right] ^{2}\\&\quad \le \exp \left( -\frac{t-h-t_n}{(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \min \left( \frac{h}{t^{2}}\left| \sum _{j=1}^n t_j \xi _j\right| ^{2},1\right) . \end{aligned}$$

For this, we used the fact that \((1-e^{-x})^2 \le 1-e^{-x} \le \min (x,1)\) for \(x>0\). Now we move the exponential inside \(\min (\ldots )\) and consider the two competing terms separately. For \(A>0\) and \(x\ge 0\), we see that

$$\begin{aligned} \exp \left( -\frac{A}{2} x^2\right) x^{2} =\exp \left( -\frac{A}{2} x^2 + 2 \log x\right) \le (2/e) A^{-1}. \end{aligned}$$
(B.27)

This can be seen by noticing that the function \(f(x)=-\frac{A}{2} x^2 +2 \log x,x>0\) attains its maximum at \(x_0=\sqrt{2/A}\). Hence, inequality (B.27) implies that

$$\begin{aligned}&\exp \left( -\frac{t-h-t_n}{(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \frac{h}{t^2}\left| \sum _{j=1}^n t_j \xi _j\right| ^{2} \\&\quad \le \frac{2h}{e t^2} \frac{(t-h)t_n}{t-h-t_n} \exp \left( -\frac{t-h-t_n}{2(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \\&\quad \le \frac{2h}{e(t-h-t_n)} \exp \left( -\frac{t-h-t_n}{2(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) . \end{aligned}$$

The second term is bounded by

$$\begin{aligned} \exp \left( -\frac{t-h-t_n}{(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \le \exp \left( -\frac{t-h-t_n}{2(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \exp&\left( -\frac{t-h-t_n}{(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \min \left( \frac{h}{t^{2}}\left| \sum _{j=1}^n t_j \xi _j\right| ^{2},1\right) \\&\le \exp \left( -\frac{t-h-t_n}{2(t-h)t_n}\left| \sum _{j=1}^n t_j \xi _j\right| ^2\right) \min \left( \frac{2h}{e(t-h-t_n)},1\right) . \end{aligned}$$

Putting the above bounds back into the expression of \(A_n'(t,h,x)\), we see that

$$\begin{aligned} A_n'(t,h,x)&\le \Gamma _t^n \lambda ^{2n} J_+^2(t,x) n! \frac{1}{(2\pi )^{nd}} \int _{0<t_1<\cdots<t_n<t-h} \mathrm {d}t_1 \ldots \mathrm {d}t_n \\&\quad \int _{\mathbb {R}^{nd}} \mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n)\\&\quad \times \prod _{k=1}^{n-1}\exp \left( -\frac{t_{k+1}-t_k}{2t_k t_{k+1}} \left| \sum _{j=1}^{k}t_j \xi _j \right| ^2\right) \\&\quad \times \exp \left( -\frac{t-h-t_n}{2(t-h)t_n} \left| \sum _{j=1}^{n}t_j \xi _j \right| ^2\right) \min \left( \frac{2h}{e(t-h-t_n)},1\right) \\&=: \Gamma _t^n \lambda ^{2n} J_+^2(t,x) n!\, A''_n(t,h). \end{aligned}$$

Relation (B.26) will follow from (3.20), once we prove that:

$$\begin{aligned} \lim _{h\rightarrow 0} A_n''(t,h) =0 . \end{aligned}$$
(B.28)

We will use the fact that

$$\begin{aligned} \frac{1}{2}\frac{t_{k+1}-t_k}{t_{k}t_{k+1}} \left| \sum _{j=1}^{k}t_j \xi _j\right| ^2= \frac{\frac{t_{k+1}}{2}-\frac{t_k}{2}}{\frac{t_{k+1}}{2}\frac{t_k}{2}} \left| \sum _{j=1}^{k}\frac{t_j}{2}\xi _j\right| ^2 \end{aligned}$$
(B.29)

for any \(k=1, \ldots ,n\), with \(t_{n+1}=t-h\). Using the change of variables \(t_k'=t_k/2\) for \(k=1,\ldots ,n\), and recalling the definition of the integral \(I_{t}^{(n)}(t_1,\ldots ,t_n)\) given in Lemma 3.3, we see that

$$\begin{aligned} A_n''(t,h)&= 2^n \int _{0<t_1<\cdots<t_{n}<\frac{t-h}{2}}\min \left( \frac{h}{e(\frac{t-h}{2}-t_n)},1 \right) I_{\frac{t-h}{2}}^{(n)}(t_1,\ldots ,t_n)\mathrm {d}t_1 \ldots \mathrm {d}t_n\\&\le 2^n \int _{0<t_1<\cdots<t_{n}<\frac{t-h}{2}}\min \left( \frac{h}{e(\frac{t-h}{2}-t_n)},1 \right) J_{\frac{t-h}{2}}^{(n)}(t_1,\ldots ,t_n)\mathrm {d}t_1 \ldots \mathrm {d}t_n \\&= 2^n \int _{0}^{\frac{t-h}{2}} \min \left( \frac{h}{e(\frac{t-h}{2}-t_n)},1 \right) k\left( \frac{2(\frac{t-h}{2}-t_n)t_n}{\frac{t-h}{2}}\right) \\&\quad \times \left( \int _{0<t_1<\cdots<t_{n-1}<t_{n}}J_{t_n}^{(n-1)}(t_1,\ldots ,t_{n-1})\mathrm {d}t_1 \ldots \mathrm {d}t_{n-1}\right) \mathrm {d}t_n\\&\le 2^{2n-1} \int _{0}^{\frac{t-h}{2}} \min \left( \frac{h}{e(\frac{t-h}{2}-s)},1 \right) k\left( \frac{2(\frac{t-h}{2}-s)s}{\frac{t-h}{2}}\right) h_{n-1}(s) \mathrm {d}s\\&\le 2^{2n} \int _{0}^{\frac{t-h}{2}} \min \left( \frac{h}{es},1 \right) k(s)h_{n-1}(t-s) \mathrm {d}s, \end{aligned}$$

where the first inequality is due to Lemma 3.5, the second last inequality is due to Lemma 3.6, and the last inequality can be proved similarly to (3.12). By the dominated convergence theorem, the last integral converges to 0 as \(h \rightarrow 0\), because \(\int _0^{t} k(s) h_{n-1}(t-s) \mathrm {d}s = h_n(t)<\infty \). This concludes the proof of (B.28).

As for \(B_n'(t,h,x)\), note that

$$\begin{aligned} B_n'(t,h,x) =\int _{[0,t]^{2n}} \prod _{j=1}^{n}\gamma (t_j-s_j) \psi _{t,x}^{(n)}(\mathbf{t}, \mathbf{s})1_{D_{t,h}'}(\mathbf{t}) 1_{D_{t,h}'}(\mathbf{s})\mathrm {d}\mathbf{t} \mathrm {d}\mathbf{s}, \end{aligned}$$

where

figure b

and \(\psi _{t,x}^{(n)}(\mathbf{t},\mathbf{s})\) is given by (3.2).

Similarly to (B.15), we have:

$$\begin{aligned} B_n'(t,h,x) \le \Gamma _{t}^n \int _{[0,t]^n} \psi _{t,x}^{(n)}(\mathbf{t},\mathbf{t})1_{D_{t,h}'}(\mathbf{t})\mathrm {d}\mathbf{t}. \end{aligned}$$
(B.30)

Using Lemmas 3.2, 3.4 and 3.6, and the fact that

$$\begin{aligned} D_{t,h}'=\bigcup _{\rho \in S_n}\{(t_1,\ldots ,t_n);0<t_{\rho (1)}<\cdots<t_{\rho (n)}<t, \, t_{\rho (n)}>t-h\}, \end{aligned}$$

we obtain that

$$\begin{aligned} B_n'(t,h,x)&\le \Gamma _{t}^n \sum _{\rho \in S_n} \int _{t-h}^{t} \int _{0<t_{\rho (1)}<\cdots<t_{\rho (n-1)}<t_{\rho (n)}} \psi _{t,x}^{(n)}(\mathbf{t},\mathbf{t})\mathrm {d}t_{\rho (1)} \ldots \mathrm {d}t_{\rho (n-1)} \mathrm {d}t_{\rho (n)} \nonumber \\&\le \Gamma _{t}^n \lambda ^{2n} J_+^2(t,x) n! \, \frac{1}{(2\pi )^{(n-1)d}} \int _{t-h}^{t} \int _{0<t_{1}<\cdots<t_{n-1}<t_{n}} \mathrm {d}t_{1} \ldots \mathrm {d}t_{n-1} \mathrm {d}t_{n}\nonumber \\&\quad \times \prod _{k=1}^{n-1} \int _{\mathbb {R}^d} \exp \left( -\frac{t_{k+1}-t_{k}}{t_{k}t_{k+1}} \left| t_{k}\xi _{k} \right| ^2\right) \mu (\mathrm {d}\xi _k)\nonumber \\&\quad \times \left( \frac{1}{(2\pi )^d}\int _{\mathbb {R}^d} \exp \left( -\frac{t-t_{n}}{t_nt} \left| t_n\xi _{n} \right| ^2\right) \mu (\mathrm {d}\xi _n) \right) \nonumber \\&= \Gamma _{t}^n \lambda ^{2n} J_+^2(t,x) n! \, \int _{t-h}^{t} \mathrm {d}t_n \, k\left( \frac{2(t-t_n)t_n}{t}\right) \nonumber \\&\quad \times \int _{0<t_{1}<\cdots<t_{n-1}<t_{n}} J_{t_n}^{(n-1)}(t_1,\ldots ,t_{n-1})\mathrm {d}t_1 \ldots \mathrm {d}t_{n-1} \nonumber \\&\le \Gamma _{t}^n \lambda ^{2n} J_+^2(t,x) n! \, 2^{n-1}\int _{t-h}^{t}h_{n-1}(t_n) k\left( \frac{2(t-t_n)t_n}{t}\right) \mathrm {d}t_n \nonumber \\&\le \Gamma _{t}^n \lambda ^{2n} J_+^2(t,x) n! \, 2^{n-1}h_{n-1}(t) \int _{0}^{h} k\left( \frac{2s(t-s)}{t}\right) \mathrm {d}s. \end{aligned}$$
(B.31)

By the dominated convergence theorem and (3.20), it follows that

$$\begin{aligned} \lim _{h \downarrow 0}B_n'(t,h,x)= 0 \quad \text{ uniformly } \text{ in } x \in [-a,a]^d. \end{aligned}$$
(B.32)

Relation (B.19) follows from (B.20), (B.26) and (B.32).

Step 3. (continuity in space) We will prove that for any \(t>0\) and \(x \in \mathbb {R}^d\),

$$\begin{aligned} \lim _{|z| \rightarrow 0}\Vert J_n(t,x+z)-J_n(t,x)\Vert _p=0. \end{aligned}$$
(B.33)

For any \(z \in \mathbb {R}^d\), we have

$$\begin{aligned} \Vert J_n(t,x+z)-J_n(t,x)\Vert _p\le & {} (p-1)^{n} \Vert J_n(t,x+z)-J_n(t,x)\Vert _2^2 \nonumber \\= & {} (p-1)^n \frac{1}{n!} \, C_n(t,x,z), \end{aligned}$$
(B.34)

where

$$\begin{aligned} C_n(t,x,z)= & {} (n!)^2 \Vert \widetilde{f}_n(\cdot ,t,x+z)-\widetilde{f}_n(\cdot ,t,x)\Vert _{\mathcal {H}^{\otimes n}}^2 \nonumber \\= & {} \int _{[0,t]^{2n}} \prod _{j=1}^{n}\gamma (t_j-s_j) \psi _{t,x,z}^{(n)}(\mathbf{t},\mathbf{s})\mathrm {d}\mathbf{t}\mathrm {d}\mathbf{s} \end{aligned}$$
(B.35)

and

$$\begin{aligned} \psi _{t,x,z}^{(n)}(\mathbf{t},\mathbf{s})&= \frac{1}{(2\pi )^{nd}} \int _{\mathbb {R}^d} \mathcal {F}(g_{\mathbf{t},t,x+z}^{(n)}-g_{\mathbf{t},t,x}^{(n)})(\xi _1,\ldots ,\xi _n)\\&\quad \times \overline{\mathcal {F}(g_{\mathbf{s},t,x+z}^{(n)}-g_{\mathbf{s},t,x}^{(n)})(\xi _1,\ldots ,\xi _n)} \mu (\mathrm {d}\xi _1) \ldots \mu (\mathrm {d}\xi _n). \end{aligned}$$

Similarly to the previous estimates, we have:

$$\begin{aligned} C_n(t,x,z)\le \Gamma _t^n \int _{[0,t]^n}\psi _{t,x,z}^{(n)}(\mathbf{t},\mathbf{t})\mathrm {d}\mathbf{t}=\Gamma _t^n \sum _{\rho \in S_n} \int _{t_{\rho (1)}<\cdots <t_{\rho (n)}}\psi _{t,x,z}^{(n)}(\mathbf{t},\mathbf{t})\mathrm {d}\mathbf{t}. \end{aligned}$$
(B.36)

If \(t_{\rho (1)}<\cdots<t_{\rho (n)}<t=t_{\rho (n+1)}\), then by (3.5),

$$\begin{aligned}&|\mathcal {F}(g_{\mathbf{t},t,x+z}^{(n)}-g_{\mathbf{t},t,x}^{(n)})(\xi _1, \ldots ,\xi _n)|^2\\&\quad =\lambda ^{2n} \prod _{k=1}^{n} \exp \left( - \frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)}t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)}\xi _{\rho (j)}\right| ^2 \right) \\&\quad \times \left| \exp \left[ -\frac{i}{t}\left( \sum _{k=1}^{n}t_k \xi _k\right) \cdot (x+z) \right] \right. \\&\left. \quad \int _{\mathbb {R}^d} \exp \left\{ -i \left[ \sum _{k=1}^{n}\left( 1-\frac{t_k}{t}\right) \xi _k\right] \cdot x_0\right\} G(t,x+z-x_0) u_0(\mathrm {d}x_0)\right. \\&\quad \left. -\exp \left[ -\frac{i}{t}\left( \sum _{k=1}^{n}t_k \xi _k\right) \cdot x \right] \right. \\&\left. \quad \int _{\mathbb {R}^d} \exp \left\{ -i \left[ \sum _{k=1}^{n}\left( 1-\frac{t_k}{t}\right) \xi _k\right] \cdot x_0\right\} G(t,x-x_0) u_0(\mathrm {d}x_0) \right| ^2. \end{aligned}$$

Inside the squared modulus above, we add and subtract the term

$$\begin{aligned}&\exp \left[ -\frac{i}{t}\left( \sum _{k=1}^{n}t_k \xi _k\right) \cdot x \right] \int _{\mathbb {R}^d} \exp \left\{ -i \left[ \sum _{k=1}^{n}\left( 1-\frac{t_k}{t}\right) \xi _k\right] \cdot x_0\right\} \\&\quad G(t,x+z-x_0) u_0(\mathrm {d}x_0). \end{aligned}$$

We obtain that

$$\begin{aligned}&|\mathcal {F}(g_{\mathbf{t},t,x+z}^{(n)}-g_{\mathbf{t},t,x}^{(n)})(\xi _1, \ldots ,\xi _n)|^2 \nonumber \\&\quad \le 2 \lambda ^{2n} \prod _{k=1}^{n} \exp \left( - \frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)}t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)}\xi _{\rho (j)}\right| ^2 \right) \\&\quad \times \left\{ \left| \exp \left[ -\frac{i}{t}\left( \sum _{k=1}^{n}t_k \xi _k\right) \cdot z \right] -1\right| ^2 J_0^2(t,x+z)+F^2(t,x,z)\right\} , \end{aligned}$$

where

$$\begin{aligned} F(t,x,z)= & {} L(t,t,x,x+z)=\int _{\mathbb {R}^d}|G(t,x+z-x_0)\nonumber \\&-G(t,x-x_0)|\,|u_0|(\mathrm {d}x_0). \end{aligned}$$
(B.37)

Hence,

$$\begin{aligned} \psi _{t,x,z}^{(n)}(\mathbf{t},\mathbf{t})&\le 2\lambda ^{2n} \frac{1}{(2\pi )^{nd}} \int _{\mathbb {R}^{nd}}\mu (\mathrm {d}\xi _1)\ldots \mu (\mathrm {d}\xi _n) \prod _{k=1}^{n} \exp \nonumber \\&\quad \left( - \frac{t_{\rho (k+1)}-t_{\rho (k)}}{t_{\rho (k)}t_{\rho (k+1)}} \left| \sum _{j=1}^{k}t_{\rho (j)}\xi _{\rho (j)}\right| ^2 \right) \\&\quad \times \left\{ \left| \exp \left[ -\frac{i}{t}\left( \sum _{k=1}^{n}t_k \xi _k\right) \cdot z \right] -1\right| ^2 J_0^2(t,x+z)+F^2(t,x,z)\right\} . \end{aligned}$$

Using (B.36), it follows that

$$\begin{aligned} C_n(t,x,z)\le 2 \left( C_n^{(1)}(t,x,z)+C_n^{(2)}(t,x,z) \right) , \end{aligned}$$
(B.38)

where

$$\begin{aligned} C_n^{(1)}(t,x,z)&= \Gamma _t^n \lambda ^{2n} J_+^2(t,x+z) n! \frac{1}{(2\pi )^{nd}}\nonumber \\&\quad \int _{0<t_1<\cdots<t_n<t} \int _{\mathbb {R}^{nd}} \prod _{k=1}^{n} \exp \left( - \frac{t_{k+1}-t_{k}}{t_{k}t_{k+1}}\left| \sum _{j=1}^{k}t_{j}\xi _{j}\right| ^2 \right) \nonumber \\&\quad \times \left| \exp \left[ -\frac{i}{t}\left( \sum _{k=1}^{n}t_k \xi _k\right) \cdot z \right] -1\right| ^2 \mu (\mathrm {d}\xi _1)\ldots \mu (\mathrm {d}\xi _n) \mathrm {d}t_1 \ldots \mathrm {d}t_n, \end{aligned}$$
(B.39)

and

$$\begin{aligned} C_n^{(2)}(t,x,z)&= \Gamma _t^n \lambda ^{2n} F^2(t,x,z) n! \frac{1}{(2\pi )^{nd}}\int _{0<t_1<\cdots<t_n<t} \int _{\mathbb {R}^{nd}} \exp \nonumber \\&\quad \left( - \frac{t_{k+1}-t_{k}}{t_{k}t_{k+1}}\left| \sum _{j=1}^{k}t_{j}\xi _{j}\right| ^2 \right) \nonumber \\&\quad \times \mu (\mathrm {d}\xi _1)\ldots \mu (\mathrm {d}\xi _n) \mathrm {d}t_1 \ldots \mathrm {d}t_n. \end{aligned}$$
(B.40)

By relation (B.6), \(\lim _{|z|\rightarrow 0}J_+(t,x+z)=J_+(t,x)\). By the dominated convergence theorem, \(\lim _{|z|\rightarrow 0}C_{n}^{(1)}(t,x,z)=0\). By (B.6), \(\lim _{|z| \rightarrow 0}F(t,x,z)=0\), and hence \(\lim _{|z|\rightarrow 0}C_{n}^{(2)}(t,x,z)=0\). Relation (B.33) follows from (B.34) and (B.38). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balan, R.M., Chen, L. Parabolic Anderson Model with Space-Time Homogeneous Gaussian Noise and Rough Initial Condition. J Theor Probab 31, 2216–2265 (2018). https://doi.org/10.1007/s10959-017-0772-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0772-2

Keywords

Mathematics Subject Classification (2010)

Navigation