Skip to main content
Log in

Stochastic fractional Anderson models with fractional noises

  • Published:
Chinese Annals of Mathematics, Series B Aims and scope Submit manuscript

Abstract

The authors are concerned with a class of one-dimensional stochastic Anderson models with double-parameter fractional noises, whose differential operators are fractional. A unique solution for the model in some appropriate Hilbert space is constructed. Moreover, the Lyapunov exponent of the solution is estimated, and its Hölder continuity is studied. On the other hand, the absolute continuity of the solution is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azerad, P. and Mellouk, M., On a stochastic partial differential equation with non-local diffusion, Potential Anal., 27(2), 2007 183–197.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bo, L. J., Jiang, Y. M. and Wang, Y. J., On a class of stochastic Anderson models with fractional noises, Stoch. Anal. Appl., 26(2), 2008, 256–273.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bo, L. J., Shi, K. H. and Wang, Y. J., On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps, Stoch. Dyn., 7(4), 2007, 439–457.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bo, L. J., Jiang, Y. M. and Wang, Y. J., Stochastic Cahn-Hilliard equation with fractional noise, Stoch. Dyn., 8(4), 2008, 643–665.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bo, L. J. and Wang, Y. J., Stochatic Cahn-Hilliard partial differential equations with Lévy spacetime noises, Stoch. Dyn., 6(2), 2006, 229–244.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cardon-Weber, C., Cahn-Hilliard stochastic equation: existence of the solution and of its density, Bernoulli, 7(5), 2001, 777–816.

    Article  MATH  MathSciNet  Google Scholar 

  7. Dasgupta, A. and Kallianpur, G., Chaos decomposition of multiple fractional integrals and applications, Prob. Theory Relat. Fields, 115(4), 1999, 527–548.

    Article  MATH  MathSciNet  Google Scholar 

  8. Debbi, L. and Dozzi, M., On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension, Stoch. Proc. Appl., 115(11), 2005, 1764–1781.

    Article  MATH  MathSciNet  Google Scholar 

  9. Eidelman, S. D. and Zhitarashu, N. V., Parabolic Boundary Value Problems, Birkhäuser, Basel, 1998.

    MATH  Google Scholar 

  10. Hu, Y. Z., Heat equations with fractional white noise potentials, Appl. Math. Optim., 43(3), 2001, 221–243.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu, Y. Z., Chaos expansion of heat equations with white noise potentials, Potential Anal., 16(1), 2002, 45–66.

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang, Y. M., Shi, K. H. and Wang, Y. J., On a class of stochastic fractional partial differential equations with fractional noises, preprint, 2008.

  13. Le Mehaute, A., Machado, T., Trigeassou, J. C. and Sabatier, J., Fractional Differentiation and Its Applications, Proceedings of the First IFAC Workshop, Vol. 2004-1, International Federation of Automatic Control, ENSEIRB, Bordeaux, France, 2004.

    Google Scholar 

  14. Mann, J. A. and Woyczynski, W. A., Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A, 291(1–4), 2001, 159–183.

    MATH  Google Scholar 

  15. Mémin, J., Mishura, Y. and Valkeila, E., Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion, Stat. Prob. Lett., 51(2), 2001, 197–206.

    Article  MATH  Google Scholar 

  16. Metzler, R. and Klafter, J., The random walk’s guide to anomalous diffusion: a fractionl dynamics approach, Phys. Rep., 339, 2000, 1–77.

    Article  MATH  MathSciNet  Google Scholar 

  17. Mueller, C., Long-time existence for the heat equation with a noise term, Prob. Theory Relat. Fields, 90(4), 1991, 505–517.

    Article  MATH  MathSciNet  Google Scholar 

  18. Mueller, C. and Tribe, R., A measure-valued process related to the parabolic Anderson model, Prog. Prob., 52, 2002, 219–227.

    MathSciNet  Google Scholar 

  19. Nualart, D. and Ouknine, Y., Regularization of quasilinear heat equations by a fractional noise, Stoch. Dyn., 4(2), 2004, 201–221.

    Article  MATH  MathSciNet  Google Scholar 

  20. Nualart, D. and Rozovskii, B., Weighted stochastic Sobolev spaces and bilinear SPDEs driven by spacetime white noise, J. Funct. Anal., 149(1), 1997, 200–225.

    Article  MathSciNet  Google Scholar 

  21. Nualart, D. and Zakai, M., Generalized Brownian functionals and the solution to a stochastic partial differential equation, J. Funct. Anal., 84(2), 1989, 279–296.

    Article  MATH  MathSciNet  Google Scholar 

  22. Nualart, D., Stochastic calculus with respect to the fractional Brownian motion and applications, Cont. Math., 336, 2003, 3–39.

    MathSciNet  Google Scholar 

  23. Nualart, D., The Malliavin Calculus and Related Topics, Springer-Verlag, Heidelberg, 2006.

    MATH  Google Scholar 

  24. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  25. Uemura, H., Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior, Stoch. Anal. Appl., 14(4), 1996, 487–506.

    Article  MATH  MathSciNet  Google Scholar 

  26. Walsh, J., An introduction to stochastic partial differential equations, Ecole d’Eté de Probabilité de Saint Fleur XIV, Lecture Notes in Math., 1180, Springer-Verlag, Berlin, 1986, 265–439.

    Google Scholar 

  27. Zaslavsky, G. M., Fractional kinetic equations for Hamiltonian chaos, Phys. D, 76(1–3), 1994, 110–122.

    Article  MathSciNet  Google Scholar 

  28. Zaslavsky, G. M. and Abdullaev, S. S., Scaling properties and anomalous transport of particles inside the stochastic layer, Phys. Rev. E, 51(5), 1995, 3901–3910.

    Article  MathSciNet  Google Scholar 

  29. Zhang, T. and Zheng, W., SPDEs driven by space-time white noises in high dimensions: absolute continuity of the law and convergence of solutions, Stoch. Stoch. Rep., 75(3), 2003, 103–128.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Jiang.

Additional information

Projects supported by the National Natural Science Foundation of China (No. 10871103).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Shi, K. & Wang, Y. Stochastic fractional Anderson models with fractional noises. Chin. Ann. Math. Ser. B 31, 101–118 (2010). https://doi.org/10.1007/s11401-008-0244-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11401-008-0244-1

Keywords

2000 MR Subject Classification

Navigation