Skip to main content
Log in

Inverse Mean Value Properties (A Survey)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Several mean value identities for harmonic and panharmonic functions are reviewed along with the corresponding inverse properties. The latter characterize balls, annuli, and strips analytically via these functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer, New York (2001).

    Book  Google Scholar 

  2. I. Netuka and J. Veselý, “Mean value property and harmonic functions,” In: Classical and Modern Potential Theory and Applications, pp. 359–398, Kluwer, Dordrecht (1994).

    Chapter  Google Scholar 

  3. Ü, Kuran, “On the mean value property of harmonic functions,” Bull. Lond. Math. Soc. 4, 311–312 (1972).

  4. N. Kuznetsov, “Characterization of balls via solutions of the modified Helmholtz equation,” C. R., Math., Acad. Sci. Paris 359, No. 8, 945–948 (2021).

  5. N. Kuznetsov, “Inverse mean value property of solutions to the modified Helmholtz equation,” Algebra Anal. 33, No. 6,71–77 (2021).

    MathSciNet  Google Scholar 

  6. W. Fulks, “A mean value theorem for the heat equation,” Proc. Am. Math. Soc. 17, 6–11 (1966).

    Article  MathSciNet  Google Scholar 

  7. N. A. Watson, “Characterizations of open strips by temperatures and harmonic functions,” N. Z. J. Math. 25, No. 2, 243–248 (1996).

    MathSciNet  MATH  Google Scholar 

  8. R. J. Duffin, “Yukawan potential theory,” J. Math. Anal. Appl. 35, 105–130 (1971).

    Article  MathSciNet  Google Scholar 

  9. C. F. Gauss, Allgemeine Lehrs¨atze in Beziehung auf die im verkehrten Verhältnisse des Quadrats der Entfernung wirkenden Anziehungs- und Abstoungskräfte, Leipzig (1840).

  10. P. Koebe, “Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft” [in German], Sitzungsber. Berl. Math. Ges. 5, 39–42 (1906).

    MATH  Google Scholar 

  11. C. Neumann, Allgemeine Untersuchungen über das Newtonsche Prinzip der Fernwirkungen, Teubner, Leipzig (1896).

    Google Scholar 

  12. N. Kuznetsov, “Mean value properties of solutions to the Helmholtz and modified Helmholtz equations,” J. Math. Sci. 257, No. 5, 673–683 (2021).

    Article  MathSciNet  Google Scholar 

  13. N. Kuznetsov, “Metaharmonic functions: mean flux theorem, its converse and related properties” [in Russian], Algebra Anal. 33, No. 2, 82–97 (2021).

    Google Scholar 

  14. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, New York (1955).

    MATH  Google Scholar 

  15. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge (1944).

    MATH  Google Scholar 

  16. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics. A Unified Introduction with Applications, Birkhäuser, Basel (1988).

    Book  Google Scholar 

  17. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol. 2: Special Functions, Gordon and Breach, New York etc. (1986).

  18. D. H. Armitage and M. Goldstein, “Quadrature and harmonic L1-approximation in annuli,” Trans. Am. Math. Soc. 312, No. 1, 141–154 (1989).

    MATH  Google Scholar 

  19. S. J. Gardiner and T. Sjödin, “A characterization of annular domains by quadrature identities,” Bull. Lond. Math. Soc. 51, No. 3, 436–442 (2019).

    Article  MathSciNet  Google Scholar 

  20. D. H. Armitage and M. Goldstein, “Quadrature and harmonic approximation of subharmonic functions in strips,” J. Lond. Math. Soc., II 46, 171–179 (1992).

    Article  MathSciNet  Google Scholar 

  21. D. H. Armitage and M. Goldstein, “Characterizations of balls and strips via harmonic quadrature,” In: Approximation by Solutions of Partial Differential Equations, pp. 1–9, Kluwer, London etc. (1992).

    MATH  Google Scholar 

  22. D. H. Armitage and S. J. Gardiner, “On the growth of the hyperplane mean of a subharmonic function,” J. Lond. Math. Soc., II 36, No. 3, 501–512 (1987).

    Article  MathSciNet  Google Scholar 

  23. M. Goldstein, W. Haussmann, and L. Rogge, “A harmonic quadrature formula characterizing bi-infinite cylinders,” Mich. Math. J. 42, No. 1, 175–191 (1995).

    Article  MathSciNet  Google Scholar 

  24. D. Aharonov, M. M. Schiffer, and L. Zalcman, “Potato Kugel,” Isr. J. Math. 40, 331–339 (1981).

    Article  MathSciNet  Google Scholar 

  25. G. Cupini and E. Lanconelli, “On the harmonic characterization of domains via mean value formulas,” Matematiche 75, No. 1, 331–352 (2020).

    MathSciNet  MATH  Google Scholar 

  26. A. A. Kosmodem’yanskii (Jr.), “A converse of the mean value theorem for harmonic functions,” Russ. Math. Surv. 36, No. 5, 159–160 (1981).

  27. A. Bennett, “Symmetry in an overdetermined fourth order elliptic boundary value problem,” SIAM J. Math. Anal. 17, 1354–1358 (1986).

    Article  MathSciNet  Google Scholar 

  28. J. Serrin, “A symmetry problem in potential theory,” Arch. Ration. Mech. Anal. 43, 304–318 (1971).

    Article  MathSciNet  Google Scholar 

  29. H. F. Weinberger, “Remark on the preceding paper of Serrin,” Arch. Ration. Mech. Anal. 43, 319–320 (1971).

    Article  MathSciNet  Google Scholar 

  30. L. E. Payne and P. W. Schaefer, “Duality theorems in some overdetermined boundary value problems,” Math. Methods Appl. Sci. 11, No. 6, 805–819 (1989).

    Article  MathSciNet  Google Scholar 

  31. A. Didenko and B. Emamizadeh, “A characterization of balls using the domain derivative.” Electron. J. Differ. Equ. 2006 Paper No. 154 (2006).

  32. J. Simon, “Differentiation with respect to the domain in boundary value problems,” Numer. Func. Anal. Optim. 2. 649–687 (1981).

    Article  MathSciNet  Google Scholar 

  33. Y. Avci, “Characterization of shell domains by quadrature identities,” J. Lond. Math. Soc., II 23, 123–128 (1981).

    Article  MathSciNet  Google Scholar 

  34. W. K. Hayman and E. F. Lingham, Research Problems in Function Theory, Springer, Cham (2019).

    Book  Google Scholar 

  35. W. Hansen and I. Netuka, “Inverse mean value property of harmonic functions,” Math. Ann. 297, No. 1, 147–156 (1993); Corrigendum: Math. Ann. 303, No. 2, 373–375 (1995).

  36. I. Marrero Rodríguez, “Analytic characterizations of annuli,” Rev. Acad. Canar. Cienc. 1, 147–153 (1990).

    MathSciNet  MATH  Google Scholar 

  37. M. Goldstein, W. Haussmann, and L. Rogge, “Characterization of open strips by harmonic quadrature,” In: Approximation by Solutions of Partial Differential Equations, pp. 87–92 (1992).

  38. D. H. Armitage and C. S. Nelson, “A harmonic quadrature formula characterizing open strips,” Math. Proc. Camb. Philos. Soc. 113, No. 1, 147–151 (1993).

    Article  MathSciNet  Google Scholar 

  39. M. Goldstein, W. Haussmann, and L. Rogge, “On the inverse mean value property of harmonic functions on strips,” Bull. Lond. Math. Soc. 24, No. 6, 559–564 (1992).

    Article  MathSciNet  Google Scholar 

  40. D. H. Armitage and M. Goldstein, “The volume mean-value property of harmonic functions,” Complex Variables, Theory Appl. 13, No. 3-4, 185–193 (1990).

    Article  MathSciNet  Google Scholar 

  41. J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, Berlin etc. (1984).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kuznetsov.

Additional information

Translated from Problemy Matematicheskogo Analiza 115, 2022, pp. 41-53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N. Inverse Mean Value Properties (A Survey). J Math Sci 262, 275–290 (2022). https://doi.org/10.1007/s10958-022-05816-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05816-w

Navigation