Skip to main content
Log in

The harmonic and geometric means are Bernstein functions

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In the paper, the authors present by several approaches that both the harmonic mean and the geometric mean of two positive numbers are Bernstein functions and establish their integral representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington (1972)

  2. Atanassov, R.D., Tsoukrovski, U.V.: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulgare Sci. 41(2), 21–23 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Berg, C.: Integral representation of some functions related to the gamma function. Mediterr. J. Math. 1(4), 433–439 (2004). http://dx.doi.org/10.1007/s00009-004-0022-6

  4. Berg, C.: Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity, In: Mateu, S., Porcu E. (eds) : Positive Definite Functions: from Schoenberg to Space-Time Challenges. Dept. Math., Univ. Jaume I, p. 24. Castellón de la Plana, Spain (2008). http://dx.doi.org/10.1.1.142.3872

  5. Bochner, S.: Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley-Los Angeles (1960)

    MATH  Google Scholar 

  6. Bullen, P.S.: Handbook of means and their inequalities, mathematics and its applications, Volume 560, Kluwer Academic Publishers, Dordrecht-Boston-London (2003). http://dx.doi.org/10.1007/978-94-017-0399-4

  7. Chen, C.-P., Qi, F., Srivastava, H.M.: Some properties of functions related to the gamma and psi functions, Integral Transforms Spec. Funct. 21(2), 153–164 (2010). http://dx.doi.org/10.1080/10652460903064216

  8. Gamelin, T.W.: Complex Analysis, Undergraduate Texts in Mathematics, Springer, New York-Berlin-Heidelberg (2001). http://dx.doi.org/10.1007/978-0-387-21607-2

  9. Guo, B.-N., Qi, F.: A completely monotonic function involving the tri-gamma function and with degree one. Appl. Math. Comput. 218(19), 9890–9897 (2012). http://dx.doi.org/10.1016/j.amc.2012.03.075

  10. Guo, B.-N., Qi, F.: A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 72(2), 21–30 (2010)

  11. Guo, B.-N., Qi, F.: A simple proof of logarithmic convexity of extended mean values. Numer. Algorithms 52(1), 89–92 (2009). http://dx.doi.org/10.1007/s11075-008-9259-7

  12. Guo, B.-N., Qi, F.: On the degree of the weighted geometric mean as a complete Bernstein function. Afr. Mat. 26(7), 1253–1262 (2015). http://dx.doi.org/10.1007/s13370-014-0279-2

  13. Guo, B.-N., Qi, F.: The function\((b^x-a^x)/x\): Logarithmic convexity and applications to extended mean values. Filomat 25(4), 63–73 (2011). http://dx.doi.org/10.2298/FIL1104063G

  14. Henrici, P.: Applied and Computational Complex Analysis, Vol. 2, Wiley, NY (1977)

  15. Kalugin, G.A., Jeffrey, D.J., Corless, R.M.: Bernstein, Pick, Poisson and related integral expressions for Lambert W, Integral Transforms Spec. Funct. 23(11), 817–829 (2012). http://dx.doi.org/10.1080/10652469.2011.640327

  16. Kalugin, G.A., Jeffrey, D.J., Corless, R.M., Borwein, P.B.: Stieltjes and other integral representations for functions of Lambert W. Integral Transf. Spec. Funct. 23(8), 581–593 (2012). http://dx.doi.org/10.1080/10652469.2011.613830

  17. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis, Kluwer Academic Publishers (1993). http://dx.doi.org/10.1007/978-94-017-1043-5

  18. Qi, F.: A new lower bound in the second Kershaw’s double inequality. J. Comput. Appl. Math. 214(2), 610–616 (2008). http://dx.doi.org/10.1016/j.cam.2007.03.016

  19. Qi, F.: Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions. Math. Inequal. Appl. 18(2), 493–518 (2015). http://dx.doi.org/10.7153/mia-18-37

  20. Qi, F.: The extended mean values: Definition, properties, monotonicities, comparison, convexities, generalizations, and applications. Cubo Mat. Educ. 5(3), 63–90 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296(2), 603–607 (2004). http://dx.doi.org/10.1016/j.jmaa.2004.04.026

  22. Qi, F., Chen, S.-X.: Complete monotonicity of the logarithmic mean. Math. Inequal. Appl. 10(4), 799–804 (2007). http://dx.doi.org/10.7153/mia-10-73

  23. Qi, F., Guo, B.-N.: Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Res. Rep. Coll. 7(1) Art. 8, 63–72 (2004). http://rgmia.org/v7n1.php

  24. Qi, F., Guo, S., Chen, S.-X.: A new upper bound in the second Kershaw’s double inequality and its generalizations. J. Comput. Appl. Math. 220(1–2), 111–118 (2008). http://dx.doi.org/10.1016/j.cam.2007.07.037

  25. Qi, F., Luo, Q.-M., Guo, B.-N.: The function\((b^x-a^x)/x\): Ratio’s properties. In: Milovanović, G.V., Rassias, M. Th. (eds) Analytic Number Theory, Approximation Theory, and Special Functions, pp. 485–494. Springer (2014). http://dx.doi.org/10.1007/978-1-4939-0258-3_16

  26. Qi, F., Wang, S.-H.: Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions. Glob. J. Math. Anal. 2(3), 91–97 (2014). http://dx.doi.org/10.14419/gjma.v2i3.2919

  27. Qi, F., Wei, C.-F., Guo, B.-N.: Complete monotonicity of a function involving the ratio of gamma functions and applications. Banach J. Math. Anal. 6(1), 35–44 (2012). http://dx.doi.org/10.15352/bjma/1337014663

  28. Qi, F., Zhang, X.-J., Li, W.-H.: An elementary proof of the weighted geometric mean being a Bernstein function. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 77(1), 35–38 (2015)

  29. Qi, F., Zhang, X.-J., Li, W.-H.: An integral representation for the weighted geometric mean and its applications. Acta Math. Sin. (Engl. Ser.) 30(1), 61–68 (2014). http://dx.doi.org/10.1007/s10114-013-2547-8

  30. Qi, F., Zhang, X.-J., Li, W.-H.: Lévy-Khintchine representation of the geometric mean of many positive numbers and applications. Math. Inequal. Appl. 17(2), 719–729 (2014). http://dx.doi.org/10.7153/mia-17-53

  31. Qi, F., Zhang, X.-J., Li, W.-H.: Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean. Mediterr. J. Math. 11(2), 315–327 (2014). http://dx.doi.org/10.1007/s00009-013-0311-z

  32. Qi, F., Zhang, X.-J., Li, W.-H.: Some Bernstein functions and integral representations concerning harmonic and geometric means. arXiv preprint (2013). http://arxiv.org/abs/1301.6430

  33. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions, de Gruyter Studies in Mathematics 37. De Gruyter, Berlin (2010)

    Google Scholar 

  34. Stolarsky, K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

  36. Zhang, X.-J.: Integral Representations, Properties, and Applications of Three Classes of Functions. Thesis supervised by Professor Feng Qi and submitted for the Master Degree of Science in Mathematics at Tianjin Polytechnic University (2013) (Chinese)

Download references

Acknowledgments

This first author was partially supported by the National Natural Science Foundation of China under Grant No. 11361038 and by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No. NJZY14192, China. The authors thank anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Zhang, XJ. & Li, WH. The harmonic and geometric means are Bernstein functions. Bol. Soc. Mat. Mex. 23, 713–736 (2017). https://doi.org/10.1007/s40590-016-0085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0085-y

Keywords

Mathematics Subject Classification

Navigation