Skip to main content
Log in

Mean Value Properties of Harmonic Functions and Related Topics (a Survey)

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Results involving various mean value properties are reviewed for harmonic, biharmonic and metaharmonic functions. It is also considered how the standard mean value property can be weakened to imply harmonicity and belonging to other classes of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Netuka, “Harmonic functions and mean value theorems” [in Czech], Čas. Pěst. Mat. 100, 391–409 (1975).

    Google Scholar 

  2. I. Netuka and J. Veselý, “Mean value property and harmonic functions,” In Classical and Modern Potential Theory and Applications, pp. 359–398 Kluwer, Dordrecht (1994).

  3. W. Hansen and N. Nadirashvili, “A converse to the mean value theorem for harmonic functions,” Acta Math. 171, 139–163 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Hansen and N. Nadirashvili, “On Veech’s conjecture for harmonic functions,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22, No. 1, 137–153 (1995).

    MathSciNet  MATH  Google Scholar 

  5. P. Freitas and J. P. Matos, “On the characterization of harmonic and subharmonic functions via mean-value properties,” Potential Anal. 32, 189–200 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Zaru, “On the Mean Value Property of Harmonic Functions,” Master’s Thesis, Department of Mathematics, McGiIl University, Montreal (1992).

  7. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin etc. (1983).

  8. S. G. Mikhlin, Mathematical Physics, an Advanced Course, North-Holland, Amsterdam etc. (1970).

  9. O. D. Kellogg, Foundations of Potential Theory, Springer, Berlin (1929).

    Book  MATH  Google Scholar 

  10. N. Kuznetsov, V. Maz’ya, and B. Vainberg, Linear Water Waves: A Mathematical Approach, Cambridge Univ. Press, Cambridge (2002).

    Book  MATH  Google Scholar 

  11. N. Kuznetsov and O. Motygin, “Freely floating structures trapping time-harmonic water waves,” Quart. J. Mech. Appl. Math. 68, 173–193 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. L. Helms, Introduction to Potential Theory, Wiley, New York (1969).

    MATH  Google Scholar 

  13. P. Koebe, “Herleitung der partiellen Differentialgleichungen der Potentialfunktion aus deren Integraleigenschaft” [in German], Sitzungsber. Berl. Math. Ges. 5, 39–42 (1906).

    MATH  Google Scholar 

  14. M. Brelot, Éléments de la Théorie Classique du Potentiel [in French], CDU, Paris (1961).

  15. E. E. Levi, “Sopra una proprietà caratteristica delle funzioni armoniche” [in Italian], Rom. Acc. L. Rend. (5), 18, No. 1, 10–15 (1909).

  16. L. Tonelli, “Sopra una proprietà caratteristica delle funzione armoniche” [in Italian] Rom. Acc. L. Rend. (5), 18, No. 1, 577–582 (1909).

    Google Scholar 

  17. C. Miranda, Partial Differential Equations of Elliptic Type, Springer, Berlin etc. (1970).

    Book  MATH  Google Scholar 

  18. V. A. Uspenskii, “Geometric derivation of basic properties of harmonic functions” [in Russian], Usp. Mat. Nauk 4, 201–205 (1949).

    Google Scholar 

  19. S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer, New York (1992).

  20. V. V. Karachik, “On the mean value property for polyharmonic functions in the ball,” Sib. Adv. Math. 24, No. 3, 169–182 (2014).

    Article  MathSciNet  Google Scholar 

  21. M. Bôcher, “On harmonic functions in two dimensions,” American Acad. Proc. 41, 557–583 (1906).

    Article  MATH  Google Scholar 

  22. W. Blaschke, “Ein Mittelwertsatz una eine kennzeichnende Eigenschaft des logarhmischen Potentials” [in German], Leipz. Ber. 68, 3–7 (1916).

    Google Scholar 

  23. O. D. Kellogg, “Converses of Gauss’ theorem on the arithmetic mean,” Trans. Am. Math. Soc. 36, 227–242 (1934).

    MathSciNet  MATH  Google Scholar 

  24. D. Heath, “Functions possessing restricted mean value properties,” Proc. Am. Math. Soc. 41, 588–595 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. F. Beckenbach and M. Reade, “Mean values and harmonic polynomials,” Trans. Am. Math. Soc. 53, 230–238 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  26. G. C. Evans, “Fundamental points of potential theory,” The Rice Institute Pamphlet 7, No. 4, 252–329 (1920).

    MATH  Google Scholar 

  27. G. E. Raynor, “On the integro-differential equation of the Bôcher type in three space,” Bull. Am. Math. Soc. 32, 654–658 (1926).

    Article  MATH  Google Scholar 

  28. J. J. Gergen, “Note on a theorem of Bĉher and Koebe,” Bull. Am. Math. Soc. 37, 591–596 (1931).

    Article  MATH  Google Scholar 

  29. S. Saks, “Note on defining properties of harmonic functions,” Bull. Am. Math. Soc. 38, 380–382 (1932).

    Article  MathSciNet  MATH  Google Scholar 

  30. Min-Teh Cheng, “On a theorem of Nicolesco and generalized Laplace operators,” Proc. Am. Math. Soc. 2, 77–86 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  31. E. F. Beckenbach, “On characteristic properties of harmonic functions,” Proc. Am. Math. Soc. 3, 765–769 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  32. E. F. Beckenbach, “Concerning the definition of harmonic functions,” Bull. Am. Math. Soc. 51, 240–245 (1945).

    Article  MathSciNet  MATH  Google Scholar 

  33. R. B. Burckel, “A strong converse to Gauss’s mean value theorem,” Am. Math. Mon. 87, 819–820 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2, Partial Differential Equations, Wiley, New York (1962).

    MATH  Google Scholar 

  35. N. Wiener, “The Dirichlet problem,” J. Math, Phys. 3, 127–147 (1924).

    Article  MATH  Google Scholar 

  36. O. D. Kellogg, “Recent progress with the Dirichlet problem,” Bull. Am. Math. Soc. 32, 601–625 (1926).

    Article  MathSciNet  MATH  Google Scholar 

  37. F. Huckemann, “On the ’one circle’ problem for harmonic functions,” J. Lond. Math. Soc. (2) 29, 491–497 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  38. J. E. Littlewood, Some Problems in Real and Complex Analysis, D. C. Heath and Co., Lexington (1968).

    MATH  Google Scholar 

  39. W. A. Veech, “A converse to Gauss’ theorem,” Bull. Am. Math. Soc. 78, 444–446 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  40. W. A. Veech, “A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem,” Ann. Math. (2) 97, 189–216 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  41. W. Hansen and N. Nadirashvili, “Mean values and harmonic functions,” Math. Ann. 297, 157–170 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Hansen and N. Nadirashvili, “Littlewood’s one circle problem,” J. Lond. Math. Soc. 50, 349–360 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Hansen, “Littlewood’s one-circle problem, revisited,” Expo. Math. 26, No. 4, 365–374 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. Talagrand, “Sur la mesure de la projection d’un compact et certaines familles de cercles,” Bull. Sci. Math. (2) 104, 225–231 (1980).

    MathSciNet  MATH  Google Scholar 

  45. W. A. Veech, “A converse to the mean value theorem for harmonic functions,” Am. J. Math. 97, 1007–1027 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  46. W. Hansen and N. Nadirashvili, “On Veech’s conjecture for harmonic functions,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV 22, No. 1, 137–153 (1995).

    MathSciNet  MATH  Google Scholar 

  47. W. Hansen, “A Liouville property for spherical averages in the plane,” Math. Ann. 319, 539–551 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  48. W. Hansen, “A strong version of Liouville’s theorem,” Am. Math. Mon. 115, 583–595 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  49. W. Hansen, “Liouville’s theorem and the restricted mean volume property in the plane,” J. Math. Pures Appl. 77, 943–947 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Flatto, “The converse of Gauss’s theorem for harmonic functions,” J. Diff. Equations 1, 483–490 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. V. Volchkov, “New two-radii theorems in the theory of harmonic functions,” Russ. Acad. Sci., Izv., Math. 44, No. 1, 181–192 (1995).

    MathSciNet  Google Scholar 

  52. V. V. Volchkov, “The final version of the mean value theorem for harmonic functions,” Math. Notes 59, No. 3, 247–252 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  53. N. A. Watson, Introduction to Heat Potential Theory, Am. Math. Soc., Providence, RI (2012).

  54. P. Pizzetti, “Sul significato geometrico del secondo parametro differenziale di una funzione sopra una superficie qualunque” [in Italian] Rom. Acc. L. Rend. (5) 18, 309–316 (1909).

  55. J. Bramble and L. E. Payne, “Mean value theorems for polyharmonic functions,” Am. Math. Mon. 73, 124–127 (1966).

    MathSciNet  MATH  Google Scholar 

  56. M. Nicolescu, Les Fonctions Polyharmoniques [in French], Hermann, Paris (1936).

  57. M. El Kadiri and S. Haddad, “Formules de la moyenne pour les fonctions biharmoniques” [in French], Rend. Accad. Naz. Sci. XL, Mem. Mat. Appl. (5) 24, 243–253 (2000).

    MathSciNet  Google Scholar 

  58. M. El Kadiri, “Liouville’s theorem and the restricted mean property for biharmonic functions,” Electron. J. Differ. Equ. 2004, Paper No. 66, (2004).

  59. I. N. Vekua, “Metaharmonic functions” [in Russian], Tr. Tbilis. Mat. Inst. 12, 105–175 (1943); English transl.: [40, Appendix 2].

  60. I. N. Vekua, New Methods for Solving Elliptic Equations, North Holland, Amsterdam (1967).

    MATH  Google Scholar 

  61. H. von Helmholtz, “Theorie der Luftschwingungen in Röhren mit offenen Enden” [in German], J. Reine Angew. Math. 57, 1–72 (1860).

    MathSciNet  Google Scholar 

  62. H. Weber, “Ueber einige bestimmte Integrale” [in German], J. Reine Angew. Math. 69, 222–237 (1868).

    MathSciNet  MATH  Google Scholar 

  63. H. Weber, “Ueber die Integration der partiellen Differentialgleichung: \( \frac{\partial^2u}{\partial {x}^2}+\frac{\partial^2u}{\partial {y}^2}+{k}^2u=0" \) [In German] Math. Ann. 1, 1–36 (1869).

    Article  MathSciNet  Google Scholar 

  64. H. Poritsky, “Generalizations of the Gauss law of the spherical mean,” Trans. Am. Math. Soc. 43, 199–225 (1938).

    Article  MathSciNet  MATH  Google Scholar 

  65. Yu. M. Grigor’ev and V. V. Naumov, “A converse mean value theorem for the Helmholtz equation” [in Russian], Vychisl.Tekhnol. 3, No. 3, 15–18 (1998).

    MathSciNet  MATH  Google Scholar 

  66. B. M. Levitan, “On decomposition with respect to eigenfunctions of the Laplace operator” [in Russian], Mat. Sb. 35, No. 2, 267–316 (1954).

    MathSciNet  Google Scholar 

  67. V. V. Volchkov, “New theorems on the mean for solutions of the Helmholtz equation,” Russ. Acad. Sci., Sb., Math. 79, No. 2, 281–286 (1994).

    MathSciNet  Google Scholar 

  68. V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer, Dordrecht (2003).

  69. O. A. Ochakovskaya, “Theorems on ball mean values for solutions of the Helmholtz equation on unbounded domains,” Izv. Math. 76, No. 2, 365–374 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Chamberland, “Mean value integral equations and the Helmholtz equation,” Result. Math. 30, No. 1-2, 39–44 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kuznetsov.

Additional information

To N. N. Uraltseva with deep respect

Translated from Problemy Matematicheskogo Analiza99, 2019, pp. 3-21.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N. Mean Value Properties of Harmonic Functions and Related Topics (a Survey). J Math Sci 242, 177–199 (2019). https://doi.org/10.1007/s10958-019-04473-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04473-w

Navigation