Skip to main content
Log in

Lagrangian Representations for Linear and Nonlinear Transport

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this note we present a unifying approach for two classes of first-order partial differential equations: we introduce the notion of Lagrangian representation in the settings of continuity equation and scalar conservation laws. This yields, on the one hand, the uniqueness of weak solutions to transport equation driven by a two-dimensional BV nearly incompressible vector field. On the other hand, it is proved that the entropy dissipation measure for scalar conservation laws in one space dimension is concentrated on countably many Lipschitz curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alberti, S. Bianchini, and G. Crippa, “Structure of level sets and Sard-type properties of Lipschitz maps,” Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12, No. 4, 863–902 (2013).

    MathSciNet  MATH  Google Scholar 

  2. G. Alberti, S. Bianchini, and G. Crippa, “A uniqueness result for the continuity equation in two dimensions,” J. Eur. Math. Soc. (JEMS), 16, No. 2, 201–234 (2014).

    Article  MathSciNet  Google Scholar 

  3. L. Ambrosio, “Transport equation and Cauchy problem for BV vector fields,” Invent. Math., 158, No. 2, 227–260 (2004).

    Article  MathSciNet  Google Scholar 

  4. L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Clarendon Press, Oxford (2000).

    MATH  Google Scholar 

  5. C. Bardos, A. Y. le Roux, and J.-C. Nédélec, “First order quasilinear equations with boundary conditions,” Commun. Part. Differ. Equ., 4, 1017–1034 (1979).

    Article  MathSciNet  Google Scholar 

  6. S. Bianchini and S. Bonicatto, “A uniqueness result for the decomposition of vector fields in ℝd,” Preprint SISSA, 15/2017/MATE.

  7. S. Bianchini, A. Bonicatto, and N. A. Gusev, “Renormalization for autonomous nearly incompressible BV vector fields in two dimensions,” SIAM J. Math. Anal., 48, No. 1, 1–33 (2016).

    Article  MathSciNet  Google Scholar 

  8. S. Bianchini and N. A. Gusev, “Steady nearly incompressible vector fields in two-dimension: chain rule and renormalization,” Arch. Ration. Mech. Anal., 222, No. 2, 451–505 (2016).

    Article  MathSciNet  Google Scholar 

  9. S. Bianchini and E. Marconi, “On the concentration of entropy for scalar conservation laws,” Discrete Contin. Dyn. Syst. Ser. S, 9, 73–88 (2016).

    MathSciNet  MATH  Google Scholar 

  10. S. Bianchini and E. Marconi, “On the structure of L entropy solutions to scalar conservation laws in one-space dimension,” Arch. Ration. Mech. Anal., 226, No. 1, 441–493 (2017).

    Article  MathSciNet  Google Scholar 

  11. S. Bianchini, E. Marconi, and S. Bonicatto, “A Lagrangian approach to multidimensional scalar conservation laws,” Preprint SISSA, 36/2017/MATE.

  12. S. Bianchini and S. Modena, “Quadratic interaction functional for general systems of conservation laws,” Commun. Math. Phys., 338, No. 3, 1075–1152 (2015).

    Article  MathSciNet  Google Scholar 

  13. S. Bianchini and L. Yu, “Structure of entropy solutions to general scalar conservation laws in one space dimension,” J. Math. Anal. Appl., 428, No. 1, 356–386 (2015).

    Article  MathSciNet  Google Scholar 

  14. A. Bressan, “An ill posed Cauchy problem for a hyperbolic system in two space dimensions,” Rend. Semin. Mat. Univ. Padova, 110, 103–117 (2003).

    MathSciNet  MATH  Google Scholar 

  15. K. S. Cheng, “A regularity theorem for a nonconvex scalar conservation law,” J. Differ. Equ., 61, 79–127 (1986).

    Article  MathSciNet  Google Scholar 

  16. C. M. Dafermos, “Continuous solutions for balance laws,” Ric. Mat., 55, No. 1, 79–92 (2006).

    Article  MathSciNet  Google Scholar 

  17. C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin–Heidelberg (2010).

    Book  Google Scholar 

  18. C. de Lellis, “Notes on hyperbolic systems of conservation laws and transport equations,” Handb. Differ. Equ., 3, 277–382 (2007).

    MathSciNet  MATH  Google Scholar 

  19. C. de Lellis and T. Riviere, “Concentration estimates for entropy measures,” J. Math. Pures Appl. (9), 82, 1343–1367 (2003).

    Article  MathSciNet  Google Scholar 

  20. R. J. DiPerna and P.-L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math., 98, No. 3, 511–547 (1989).

    Article  MathSciNet  Google Scholar 

  21. O. A. Oleĭnik, “Discontinuous solutions of non-linear differential equations,” Am. Math. Soc. Transl. Ser. 2, 26, 95–172 (1963).

    MathSciNet  MATH  Google Scholar 

  22. F. Otto, “Initial-boundary value problem for a scalar conservation law,” C. R. Math. Acad. Sci. Paris, 322, No. 8, 729–734 (1996).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bianchini.

Additional information

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Fundamental Directions), Vol. 63, No. 3, Differential and Functional Differential Equations, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchini, S., Bonicatto, P. & Marconi, E. Lagrangian Representations for Linear and Nonlinear Transport. J Math Sci 253, 642–659 (2021). https://doi.org/10.1007/s10958-021-05259-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-021-05259-9

Navigation