Skip to main content
Log in

The Wiener Measure on the Heisenberg Group and Parabolic Equations

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we study questions related to the theory of stochastic processes on Lie nilpotent groups. In particular, we consider the stochastic process on the Heisenberg group H3(ℝ) whose trajectories satisfy the horizontal conditions in the stochastic sense relative to the standard contact structure on H3 (ℝ). It is shown that this process is a homogeneous Markov process relative to the Heisenberg group operation. There was found a representation in the form of a Wiener integral for a one-parameter linear semigroup of operators for which the Heisenberg sublaplacian generated by basis vector fields of the corresponding Lie algebra L(H3) is producing. The main method of solving the problem in this paper is using the path integrals technique, which indicates the common direction of further development of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Applebaum and S. Cohen, “Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group,” Ann. Fac. Sci. Toulouse: Math., Sér. 6, 13, No. 2, 149–177 (2004).

    Article  Google Scholar 

  2. V. I. Arnold, Mathematical Methods of Classical Mechanics [in Russian], Nauka, Moscow (1989).

    Book  Google Scholar 

  3. V. N. Berestovskii, “Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane,” Sib. Math. J., 35, No. 1, 1–8 (1994).

    Article  Google Scholar 

  4. V. I. Bogachev and O. G. Smolyanov, Real and Functional Analysis: A University Course [in Russian], Regular and Chaotic Dynamics, Moscow (2009).

    Google Scholar 

  5. R. H. Cameron and W. T. Martin, “Transformations of Wiener integrals under translations,” Ann. Math., 45, No. 2, 386–396 (1944).

    Article  MathSciNet  Google Scholar 

  6. A. Dasgupta, S. Molahajloo, and M.-W.Wong, “The spectrum of the sub-Laplacian on the Heisenberg group,” Tˆohoku Math. J., 63, 269–276 (2011).

    Article  MathSciNet  Google Scholar 

  7. J. Delporte, “Fonctions aléatoires presque sûrement continues sur un intervalle fermé,” Ann. Inst. Henri Poincaré, 1, No. 2, 111–215 (1964).

    MathSciNet  MATH  Google Scholar 

  8. V. V. Dontsov, “The systoles of uniform lattices on a three-dimensional Heisenberg group with a Carnot–Carathéodory metric,” Fundam. Prikl. Mat., 6, No. 2, 401–432 (2000).

    MathSciNet  MATH  Google Scholar 

  9. V. V. Dontsov, “Systoles on Heisenberg groups with Carnot–Carathéodory metrics,” Sb. Math., 192, No. 3, 347–374 (2001).

    Article  MathSciNet  Google Scholar 

  10. B. Driver and T. Melcher, “Hypoelliptic heat kernel inequalities on the Heisenberg group,” J. Funct. Anal., 221, 340–365 (2005).

    Article  MathSciNet  Google Scholar 

  11. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw Hill (1965).

  12. B. Gaveau, “Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents,” Acta Math., 139, No. 1-2, 95–153 (1977).

    Article  MathSciNet  Google Scholar 

  13. I. M. Gel’fand and A. M. Yaglom, “Integration in function spaces and its application to quantum physics,” Usp. Mat. Nauk, 11, No. 1 (67), 77–114 (1956).

  14. A. V. Greshnov, “Metrics and tangent cones of uniformly regular Carnot–Carathéodory spaces,” Sib. Math. J., 47, No. 2, 209–238 (2006).

    Article  Google Scholar 

  15. A. V. Greshnov, “Differentiability of horizontal curves in Carnot–Carathéodory quasispaces,” Sib. Math. J., 49, No. 1, 53–68 (2008).

    Article  MathSciNet  Google Scholar 

  16. M. Gromov, “Carnot–Carathéodory spaces seen from within,” in: Sub-Riemannian Geometry, Birkhäuser, Basel (1996).

    Chapter  Google Scholar 

  17. A. Hulanicki, “The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group,” Stud. Math., 56, No. 2, 165–173 (1976).

    Article  MathSciNet  Google Scholar 

  18. V. V. Kisil, “On the algebra of pseudodifferential operators which is generated by convolutions on the Heisenberg group,” Sib. Math. J., 34, No. 6, 1066–1075 (1993).

    Article  Google Scholar 

  19. A. N. Kolmogorov, Foundations of the Theory of Probability, Chelsea, New York (1956).

    MATH  Google Scholar 

  20. I. M. Koval’chik, “The Wiener integral,” Russ. Math. Surv., 18, No. 1, 97–134 (1963).

    Article  MathSciNet  Google Scholar 

  21. S. G. Krantz, Explorations in Harmonic Analysis with Applications to Complex Function Theory and the Heisenberg Group, Springer, Berlin (2007).

    Google Scholar 

  22. P. Lévy, Processus stochastiques et mouvement brownien [in French], Paris (1965).

  23. P. Lévy, “Le mouvement brownien plan,” Am. J. Math., 62, 487–550 (1940).

    Article  MathSciNet  Google Scholar 

  24. W. Magnus and A. Karrass, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Wiley & Sons, New York (1966).

    MATH  Google Scholar 

  25. D. Neuenschwander, Probabilities on the Heisenberg Group. Limit Theorems and Brownian Motion, Lect. Notes Math., Vol. 163, Springer, Berlin (1996).

  26. P. K. Rashevsky, “Any two points of a totally nonholonomic space may be connected by an admissible line,” Uch. Zap. Ped. Inst. Liebknechta, Ser. Phys. Math., 3, No. 2, 83–94 (1938).

    Google Scholar 

  27. E. F. Sachkova, “Sub-Riemannian balls on the Heisenberg groups: an invariant volume,” in: J. Math. Sci., 199, No. 5, 583–587 (2014).

    Article  MathSciNet  Google Scholar 

  28. G. E. Shilov, “Integration in infinite-dimensional spaces and the Wiener integral,” Usp. Mat. Nauk, 18, No. 2 (110), 99–120 (1963).

    Article  MathSciNet  Google Scholar 

  29. E. M. Stein, Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (1993).

  30. M. E. Taylor, Noncommutative Microlocal Analysis, Pt. I, Memoirs Amer. Math. Soc., Vol. 313, Amer. Math. Soc. (1984).

  31. S. Watanabe, “Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels,” Ann. Probab., 15, No. 1, 1–39 (1987).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mamon.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 21, No. 4, pp. 67–98, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamon, S.V. The Wiener Measure on the Heisenberg Group and Parabolic Equations. J Math Sci 245, 155–177 (2020). https://doi.org/10.1007/s10958-020-04684-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04684-6

Navigation