Skip to main content
Log in

Strong Convergence of Alternating Projections

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we provide a necessary and sufficient condition under which the method of alternating projections on Hadamard spaces converges strongly. This result is new even in the context of Hilbert spaces. In particular, we found the circumstance under which the iteration of a point by projections converges strongly and we answer partially the main question that motivated Bruck’s paper (J Math Anal Appl 88:319–322, 1982). We apply this condition to generalize Prager’s theorem for Hadamard manifolds and generalize Sakai’s theorem for a larger class of the sequences with full measure with respect to Bernoulli measure. In particular, we answer to a long-standing open problem concerning the convergence of the successive projection method (Aleyner and Reich in J Convex Anal 16:633–640, 2009). Furthermore, we study the method of alternating projections for a nested decreasing sequence of convex sets on Hadamard manifolds, and we obtain an alternative proof of the convergence of the proximal point method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleyner, A., Reich, S.: Random products of quasi-nonexpansive mappings in Hilbert space. J. Convex Anal. 16, 633–640 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Amemiya, I., Ando, T.: Convergence of random products of contractions in Hilbert space. Acta Sci. Math. (Szeged) 26, 239–244 (1965)

    MathSciNet  MATH  Google Scholar 

  3. Ariza-Ruiz, D., Fernández-León, G., López-Acedo, G., Nicolae, A.: Chebyshev sets in geodesic spaces. J. Approx. Theory 207, 265–282 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ariza-Ruiz, D., López-Acedo, G., Nicolae, A.: The asymptotic behavior of the composition of firmly nonexpansive mappings. J. Optim. Theory Appl. 167(2), 409–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bačák, M.: Computing medians and means in Hadamard spaces. SIAM J. Optim. 24(3), 1542–1566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bačák, M., Reich, S.: The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory 16, 189–202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bačák, M., Searston, I., Sims, B.: Alternating projections in \(CAT(0)\) spaces. J. Math. Anal. Appl. 385(2), 599–607 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Banert, S.: Backward-backward splitting in Hadamard spaces. J. Math. Anal. Appl. 414, 656–665 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. Theory Methods Appl. 56(5), 715–738 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bento, G.C., Melo, J.G.: Subgradient method for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bregman, L.M.: Finding the common point of convex sets by the method of successive projection. Soviet Math. Dokl. 6, 688–692 (1965)

    MATH  Google Scholar 

  13. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Bruck, R.E.: Random products of contractions in metric and Banach spaces. J. Math. Anal. Appl. 88, 319–322 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Censor, Y., Lent, A.: Cyclic subgradient projections. Math. Program. 24, 233–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Censor, Y., Zenios, S.A.: Parallel Optimization. Oxford University Press, New York, NY (1997)

    MATH  Google Scholar 

  18. Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67(3), 487–507 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian manifolds. Optimization 51, 257–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Halperin, I.: The product of projection operators. Acta Sci. Math. (Szeged) 23, 96–99 (1962)

    MathSciNet  MATH  Google Scholar 

  21. Hundal, H.S.: An alternating projection that does not converge in norm. Nonlinear Anal. Theory Methods Appl. 57)(1), 35–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jost, J.: Equilibrium maps between metric spaces. Calc. Var. Part. Differ. Equ. 2(2), 173–204 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kopecká, E.: Spokes, mirrors and alternating projections. Nonlinear Anal. Theory Methods Appl. 68(6), 1759–1764 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kopecká, E., Paszkiewicz, A.: Strange products of projections. Israel J. Math. 219(1), 271–286 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79(3), 663–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matoušková, E., Reich, S.: The Hundal example revisited. J. Nonlinear Convex Anal. 4(3), 411–427 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Prager, M.: On a principle of convergence in a Hilbert space. Czechoslovak Math. J. 10(1960), 271–282 (1960)

    Article  MathSciNet  Google Scholar 

  28. Petersen, K.: Ergodic Theory. Cambridge University Press, Cambridge (1983)

    Book  MATH  Google Scholar 

  29. Sakai, M.: Strong convergence of infinite products of orthogonal projections in Hilbert space. Appl. Anal. 59(1–4), 109–120 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Suparatulatorn, R., Cholamjiak, P., Suantai, S.: On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces. Optim. Methods Softw. 32(1), 182–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs 149. American Mathematical Society, Providence (1996)

    Google Scholar 

  32. Tseng, P.: On the convergence of the products of firmly nonexpansive mappings. SIAM J. Optim. 3, 425–434 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tseng, P., Bertsekas, D.P.: Relaxation methods for problems with strictly convex separable costs and linear constraints. Math. Program. 38, 303–321 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  34. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and its Applications, vol. 297. Kluwer Academic Publishers, Netherlands (2013)

  35. von Neumann, J.: Functional Operators II: The Geometry of Orthogonal Spaces, Princeton University Press, Princeton, NJ, (1950) (This is a reprint of mimeographed lecture notes first distributed in 1933.)

  36. Viana, M., Oliveira, K.: Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, vol. 151. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  37. Walter, R.: On the metric projection onto convex sets in Riemannian spaces. Arch. Math. 25, 91–98 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, X.M., Li, C., Yao, J.C.: Subgradient projection algorithms for convex feasibility on Riemannian manifolds with lower bounded curvatures. J. Optim. Theory Appl. 164(1), 202–217 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X., Li, C., Wang, J., Yao, J.C.: Linear convergence of subgradient algorithm for convex feasibility on Riemannian manifolds. SIAM J. Optim. 25(4), 2334–2358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Youla, D.C., Webb, H.: Image restoration by the method of convex projections: part 1-theory. IEEE Trans. Med. Imag. 1(2), 81–94 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank Simeon Reich and the referees for their comments and valuable suggestions. The authors were supported in part by FAPEPI/CNPq, CNPq grants 308330/2018-8, and CAPES-Brazil doctoral fellowship at UFPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ítalo Dowell Lira Melo.

Additional information

Communicated by Olivier Fercoq.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, Í.D.L., da Cruz Neto, J.X. & de Brito, J.M.M. Strong Convergence of Alternating Projections. J Optim Theory Appl 194, 306–324 (2022). https://doi.org/10.1007/s10957-022-02028-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02028-9

Keywords

Mathematics Subject Classification

Navigation