Skip to main content
Log in

The Navier–Stokes–Vlasov–Fokker–Planck System in Bounded Domains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is concerned with the initial boundary value problem of the Vlasov–Fokker–Planck equation coupled with either the incompressible or compressible Navier–Stokes equations in a bounded domain. The global existence of unique strong solution and its exponential convergence rate to the equilibrium state are proved under the Maxwell boundary condition for the incompressible case and specular reflection boundary condition for the compressible case, respectively. For the compressible model, to overcome the lack of regularity due to the coupling with the kinetic equation in a bounded domain, an essential \(L^{\frac{10}{3}}\) estimate is analyzed so that the a priori estimate can be closed by applying the \({\mathcal {S}}_{\mathcal {L}}^p\) theory developed by Guo et al. for kinetic models, [Arch Ration Mech Anal 236(3): 1389–1454 (2020)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boudin, L., Desvillettes, L., Grandmont, C., Moussa, A.: Global existence of solutions for the coupled Vlasov and Navier–Stokes equations. Differ. Integal Equ. 22(11–12), 1247–1271 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Bramanti, M., Cerutti, M.C., Manfredini, M.: \(L^p\) estimates for some ultraparabolic operators with discontinuous coefficients. J. Math. Anal. Appl. 200(2), 332–354 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Briant, M., Guo, Y.: Asymptotic stability of the Boltzmann equation with Maxwell boundary conditions. J. Differ. Equ. 261(12), 7000–7079 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cao, Y.B., Kim, C., Lee, D.: Global strong solutions of the Vlasov–Poisson–Boltzmann system in bounded domains. Arch. Ration. Mech. Anal. 233(3), 1027–1130 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carrillo, J.A., Choi, Y.P., Karper, T.K.: On the analysis of a coupled kinetic-fluid model with local alignment forces. Ann. I. H. Poincaré-AN 33(2), 273–307 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Carrillo, J.A., Duan, R.-J., Moussa, A.: Global classical solutions close to equilibrium to the Vlasov–Euler–Fokker–Planck system. Kinet. Relat. Models 4(1), 227–258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrillo, J.A., Goudon, T.: Stability and asymptotic analysis of a fluid-particle interaction model. Commun. Partial Differ. Equ. 31(9), 1349–1379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chae, M., Kang, K., Lee, J.: Global existence of weak and classical solutions for the Navier–Stokes–Vlasov–Fokker–Planck equations. J. Differ. Equ. 251(9), 2431–2465 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Choi, Y.. P.: Large-time behavior for the Vlasov/compressible Navier–Stokes equations. J. Math. Phys. 57(7), 071501, 13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, Y.P.: Finite-time blow-up phenomena of Vlasov/Navier–Stokes equations and related systems. J. Math. Pures Appl. 108(6), 991–1021 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi, Y.P., Jung, J.: Asymptotic analysis for a Vlasov–Fokker–Planck/Navier–Stokes system in a bounded domain, arXiv:1912.13134

  12. Domelevo, K.: Well-posedness of a kinetic model of dispersed two-phase flow with point particles and stability of travelling waves. Discrete Contin. Dyn. Syst. Ser. B 2(4), 591–607 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Domelevo, K., Roquejoffre, J.M.: Existence and stability of travelling waves in a kinetic model for two-phase flows. Commun. Partial Differ. Equ. 1(1–2), 61–109 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, H.-J., Guo, Y., Ouyang, Z.: The Vlasov–Poisson–Landau System with the specular-reflection boundary condition, arXiv:2010.05314

  15. Duan, R.-J., Liu, S.-Q.: Cauchy problem on the Vlasov–Fokker–Planck equation coupled with the compressible Euler equations through the friction force. Kinet. Relat. Models 6(4), 687–700 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duan, R.-J., Liu, S.-Q., Sakamoto, S., Strain, R.M.: Global mild solutions of the Landau and non-cutoff Boltzmann equations, Commun Pure Appl Math, https://doi.org/10.1002/cpa.21920

  17. Esposito, R., Guo, Y., Kim, C., Marra, R.: Non-isothermal boundary in the Boltzmann theory and Fourier law. Commun. Math. Phys. 323(1), 177–239 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Glass, O., Han-Kwan, D., Moussa, A.: The Vlasov–Navier–Stokes system in a 2D pipe: existence and stability of regular equilibria. Arch. Ration. Mech. Anal. 230(2), 593–639 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goudon, T., He, L.-B., Moussa, A., Zhang, P.: The Navier–Stokes–Vlasov–Fokker–Planck system near equilibrium. SIAM J. Math. Anal. 42(5), 2177–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goudon, T., Jabin, P.E., Vasseur, A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations. I. Light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goudon, T., Jabin, P.E., Vasseur, A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, Y.: Decay and continuity of the Boltzmann equation in bounded domains. Arch. Ration. Mech. Anal. 197(3), 713–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, Y., Hwang, H.J., Jang, J.W., Ouyang, Z.: The Landau equation with the specular reflection boundary condition. Arch. Ration. Mech. Anal. 236(3), 1389–1454 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Y., Kim, C., Tonon, D., Trescases, A.: Regularity of the Boltzmann equation in convex domains. Invent. Math. 207(1), 115–290 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Japan J. Indust. Appl. Math. 15(51), 51–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Han-Kwan, D., Moussa, A., Moyano, I.: Large time behavior of the Vlasov–Navier–Stokes system on the torus. Arch. Ration. Mech. Anal. 236(3), 1273–1323 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, C., Lee, D.: The Boltzmann equation with specular boundary condition in convex domains. Commun. Pure Appl. Math. 71(3), 411–504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim, J., Guo, Y., Hwang, H.J.: An \(L^2\) to \(L^{\infty }\) framework for the Landau equation. Peking Math. J. (2020). https://doi.org/10.1007/s42543-019-00018-x

  29. Li, F.-C., Mu, Y.-M., Wang, D.-H.: Strong solutions to the compressible Navier–Stokes–Vlasov–Fokker-Planck equations: global existence near the equilibrium and large time behavior. SIAM J. Math. Anal. 49(2), 984–1026 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mellet, A., Vasseur, A.: Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system of equations. Math. Models Methods Appl. Sci. 17(7), 1039–1063 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mellet, A., Vasseur, A.: Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes system of equations. Commun. Math. Phys. 281(3), 573–596 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Mu, Y.M., Wang, D.H.: Global well-posedness and optimal large-time behavior of strong solutions to the non-isentropic particle-fluid flows. Calc. Var. Partial Differ. Equ. 59(4), 110 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. O’Rourke, P.: Collective drop effects on vaporizing liquid sprays, PhD thesis, Princeton University (1981)

  34. Polidoro, S., Ragusa, M.A.: Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscripta Math. 96(3), 371–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simader, C., Sohr, H.: A New Approach to the Helmholtz Decomposition and the Neumann Problem in \(L^q\)-Spaces for Bounded and Exterior Domains, Mathematical Problems Relating to the Navier–Stokes Equation. Series Advances in Applied Mathematics Science, vol. 11, pp. 1–35. World Sci. Publ., River Edge (1992)

    MATH  Google Scholar 

  36. Sun, Y.-Z., Wang, C., Zhang, Z.-F.: A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95(1), 36–47 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, D.-H., Yu, C.: Global weak solutions to the inhomogeneous Navier–Stokes–Vlasov equations. J. Differ. Equ. 259(8), 3976–4008 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Williams, F.A.: Combustion Theory, 2nd edn. Benjamin Cummings, San Francisco (1985)

    Google Scholar 

  39. Yu, C.: Global weak solutions to the incompressible Navier–Stokes–Vlasov equations. J. Math. Pures Appl. 100(2), 275–293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

H.-L. Li’s research was supported by National Natural Science Foundation of China 11931010 and 11871047 and by the key research project of Academy for Multidisciplinary Studies, Capital Normal University, and by the Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds 007/20530290068. S.-Q. Liu’s research was supported by the National Natural Science Foundation of China 11971201 and 11731008. T. Yang’s research was supported by a fellowship award from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. SRF2021-1S01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangqian Liu.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests regarding the publication of this work.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the appendix, we summarize some preliminary analysis used in deriving the \(L^\infty \) estimates in Sect. 4.

1.1 Extension Beyond the Boundary

Following the approach used in [14, 23], we extend the domain \(\Omega \) to the whole space preserving the hypoelliptic structure of the Fokker–Planck equation (1.19)\(_3\).

By the compactness of \(\partial \Omega \), there exist finitely many points \(x_i^0\in \partial \Omega \), radii \(r_i>0\) such that \(\partial \Omega \subset \cup _i^m B(x_i^0,r_i)\). Denote \(U_i=\Omega \cap B(x_i^0,r_i)\), then there exist smooth functions \(\phi _i(x_1,x_2)\in C_b^3({\mathbb {R}}^2,{\mathbb {R}})\), \((i=1,2,\cdots ,m)\) such that

$$\begin{aligned} U_i=\{x\in B(x_i^0,r_i)|x_3<\phi _i(x_1,x_2)\}, \ 1\le i\le m. \end{aligned}$$

Here \(B(x_i^0,r_i)\) is an open ball with center \(x_i^0\) and radius \(r_i>0.\) In what follows, we omit the subscript i of \(\phi _i\) and \(U_i\) for notational simplicity. We now change coordinates to flatten the boundary locally. To do this, for any \(x\in U\), define

$$\begin{aligned} \psi ^{-1}: \left( \begin{array}{rll}y_1&{}\\ y_2&{}\\ y_3&{} \end{array}\right) \mapsto&\varrho (y_1,y_2)+y_3n(y_1,y_2)\nonumber \\ =&\left( \begin{array}{ccc}&{}y_1\\ &{}y_2\\ &{}\phi (y_1,y_2) \end{array}\right) +y_3\left( \begin{array}{cc}-\partial _1\phi &{}\\ -\partial _2\phi &{}\\ 1&{} \end{array}\right) :=\left( \begin{array}{ccc}&{}x_1\\ &{}x_2\\ &{}x_3 \end{array}\right) , \end{aligned}$$

where \(\varrho (y_1,y_2)=(y_1,y_2,\phi (y_1,y_2))^T\in \partial \Omega \). Moreover, \(\partial _1\varrho =(1,0,\partial _1\phi )\), \(\partial _2\varrho =(0,1,\partial _2\phi )\), then the outward normal vector at the point \(\varrho (y_1,y_2)\in \partial \Omega \) is chosen to be

$$\begin{aligned} n(y_1,y_2)=\partial _1\varrho \times \partial _2\varrho =(-\partial _1\phi ,-\partial _2\phi ,1)^T. \end{aligned}$$

We can choose \(s>0\) small enough so that the half ball \(V':=B(0,s)\cap \{y_3<0\}\) lies in \(\psi (U)\). Then the phase boundary \(\partial \Omega \times {\mathbb {R}}^3\) is locally flattened by defining the transformation

$$\begin{aligned} \Psi :\&{\bar{U}}\times {\mathbb {R}}^3\rightarrow {\bar{V}}_{-}\times {\mathbb {R}}^3\nonumber \\&(x,\xi )\mapsto (y,w)=(\psi (x),A\xi ), \end{aligned}$$
(5.1)

where

$$\begin{aligned} A=\left( \frac{\partial y}{\partial x}\right) =\nabla _x\psi ,\ U=U_i,\ {\bar{V}}_{-}=\psi ({\bar{U}})\supset B(0,s)\cap \{y_3<0\}. \end{aligned}$$

We now change variables and extend u and f to the upper half space

$$\begin{aligned} {\tilde{u}}(y)=\left\{ \begin{array}{rll} &{}u(\psi ^{-1}(y)),\ \ y_3<0,\\ &{}u(\psi ^{-1}(Ry)),\ \ y_3\ge 0, \end{array}\right. \ {\tilde{f}}(\tau ,y,w)=\left\{ \begin{array}{rll} &{}f(\tau ,\psi ^{-1}(y),A^{-1}(y)w),\ \ y_3<0,\\ &{}f(\tau ,\psi ^{-1}(Ry),A^{-1}(Ry)Rw),\ \ y_3\ge 0, \end{array}\right. \end{aligned}$$
(5.2)

where \(R=\text {diag}(1,1,-1)\). Note that

$$\begin{aligned} {\tilde{f}}(\tau ,y,w)={\tilde{f}}(\tau ,y,Rw), \ \text {on}\ y_3=0. \end{aligned}$$

Denote \(V_+=\{y: Ry\in V_-\}\supset B(0,s)\cap \{y_3>0\}\) and set \(V={\bar{V}}_+\cup V_-.\) To extend in the \(\tau \) variable, define

$$\begin{aligned} {\bar{u}}(\tau )=\left\{ \begin{array}{rll} &{}{\tilde{u}}(\tau ,y),\ \ \tau>0,\\ &{}{\tilde{u}}(0,y),\ \ -1<\tau \le 0, \end{array}\right. \ \ \tilde{{\tilde{f}}}(\tau )=\left\{ \begin{array}{rll} &{}{\tilde{f}}(\tau ,y,w),\ \ \tau >0,\\ &{}{\tilde{f}}(0,y,w),\ \ -1<\tau \le 0. \end{array}\right. \end{aligned}$$
(5.3)

Moreover, let us define \(U_0\subset \Omega \) such that \(\cup _{i=0}^m U_i\supset \Omega \), and then denote

$$\begin{aligned} {\tilde{\Omega }}_1=U_0\cup _{i=1}^m V_{-,i},\ {\tilde{\Omega }}_2=U_0\cup _{i=1}^m V_{i}, \end{aligned}$$
(5.4)

where \(V_{-,i}\) and \(V_i\) are induced by \(U_i\) in the way as (5.1) and (5.2), respectively.

Let

$$\begin{aligned}&\chi (y)\ \text {be any fixed cutoff function in }\ C^\infty _0 (V),\nonumber \\&\text {and } \ {\bar{\chi }}(\tau )\ \text {be characteristic function on }\ [0,t], \end{aligned}$$
(5.5)

and denote \({\bar{f}}=\tilde{{\tilde{f}}}\chi {\bar{\chi }}\) for brevity. We now derive the equation that \({\bar{f}}(\tau ,y,w)\) satisfies. Actually, in view of (1.19)\(_3\), (5.1), (5.2) and (5.3), one has

$$\begin{aligned} \partial _\tau {\bar{f}}+w\cdot \nabla _y{\bar{f}}+{\mathcal {L}}_0{\bar{f}}={\mathcal {S}},\ (\tau ,y,w)\in {\mathbb {R}}^{6+1}, \end{aligned}$$
(5.6)

where

$$\begin{aligned} {\mathcal {L}}_0{\bar{f}}=-\chi _{y_3\le 0}\nabla _w\cdot (AA^T\nabla _w{\bar{f}})-\chi _{y_3>0}\nabla _w\cdot (R{\bar{A}}{\bar{A}}^TR^T\nabla _w{\bar{f}}), \end{aligned}$$
(5.7)

and

$$\begin{aligned} {\mathcal {S}}=&- ABw\nabla _w{\bar{f}}\chi _{y_3\le 0}-R{\tilde{A}}{\tilde{B}}Rw\nabla _w{\bar{f}}\chi _{y_3>0}- A{\bar{u}}\nabla _w{\bar{f}}\chi _{y_3\le 0} - R{\tilde{A}}{\bar{u}}\nabla _w{\bar{f}}\chi _{y_3>0} \nonumber \\ {}&+\left( -\frac{|A^{-1}w|^2}{4}{\bar{f}}+\frac{3}{2}{\bar{f}}\right) \chi _{y_3\le 0} +\left( -\frac{|{\tilde{A}}^{-1}Rw|^2}{4}{\bar{f}}+\frac{3}{2}{\bar{f}}\right) \chi _{y_3>0}\nonumber \\&+\chi {\bar{\chi }}(A^{-1}w)^T{\bar{u}}\tilde{{\tilde{M}}}^{\frac{1}{2}}\chi _{y_3\le 0} +{\tilde{\chi }}{\bar{\chi }}({\tilde{A}}^{-1}Rw)^T{\bar{u}}\tilde{{\tilde{M}}}^{\frac{1}{2}}\chi _{y_3>0} \nonumber \\ {}&+\frac{1}{2}(A^{-1}w)^T{\bar{u}}{\bar{f}}\chi _{y_3\le 0} +\frac{1}{2}({\tilde{A}}^{-1}Rw)^T{\bar{u}}{\bar{f}}\chi _{y_3>0} +\chi \tilde{{\tilde{f}}}(\tau )\delta (\tau )+\chi \tilde{{\tilde{f}}}(\tau )\delta (\tau -t)\nonumber \\ {}&+{\bar{\chi }}\chi _{y_3\le 0}\tilde{{\tilde{f}}}w\cdot \nabla _y\chi +{\bar{\chi }}\chi _{y_3>0}\tilde{{\tilde{f}}}Rw\cdot \nabla _y{\tilde{\chi }}+{\bar{\chi }}\chi \chi _{t\le 0}\{w\cdot \nabla _y+{\mathcal {L}}_0\}{\tilde{f}}(0,y,w), \end{aligned}$$
(5.8)

where \(\tilde{{\tilde{M}}}\) is defined as (5.3) and \(\delta (\tau )\) is the Dirac function, and

$$\begin{aligned} A^{-1}&=\left( \frac{\partial x}{\partial y}\right) =\left( \nabla _x\psi \right) ^{-1}=\left( \begin{array} {ccc} 1-y_3\partial _{11}\phi \ \ \ &{}-y_3\partial _{12}\phi \ \ \ &{}-\partial _1\phi \\ -y_3\partial _{12}\phi \ \ \ &{}1-y_3\partial _{22}\phi \ \ \ &{}-\partial _2\phi \\ \partial _1\phi \ \ \ &{}\partial _2\phi \ \ \ &{}1 \end{array}\right) , \end{aligned}$$
(5.9)
$$\begin{aligned} B&=\left( \frac{\partial \xi }{\partial y}\right) =\left( \frac{\partial (A^{-1}w)}{\partial y}\right) \nonumber \\&=\begin{pmatrix} - y_3 \partial _{111}\phi w_1 \!-\! y_3 \partial _{112}\phi w_2 &{}\;\; - y_3 \partial _{112}\phi w_1 \!-\! y_3 \partial _{122}\phi w_2 &{}\;\; - \partial _{11}\phi w_1 \!-\! \partial _{12}\phi w_2 \\ [-2pt] - \partial _{11}\phi w_3 &{} - \partial _{12}\phi w_3 &{} \\[3pt] - y_3 \partial _{112}\phi w_1 \!-\! y_3 \partial _{122}\phi w_2 &{}\;\; - y_3 \partial _{122}\phi w_1 \!-\! y_3 \partial _{222}\phi w_2 &{}\;\; - \partial _{12}\phi w_1 \!-\! \partial _{22}\phi w_2 \\ [-2pt] - \partial _{12}\phi w_3 &{} - \partial _{22}\phi w_3 &{} \\[3pt] \partial _{11}\phi w_1 + \partial _{12}\phi w_2 &{} \partial _{12}\phi w_1 + \partial _{22}\phi w_2 &{} 0 \end{pmatrix}, \end{aligned}$$
(5.10)
$$\begin{aligned} {\tilde{A}}(y)&=A(Ry),\ {\tilde{B}}(y)=B(Ry),\ {\tilde{\chi }}(y)=\chi (Ry), \end{aligned}$$
(5.11)

and \(\chi _{\tau >0}\), \(\chi _{y_3\le 0}\) as well as \(\chi _{y_3>0}\) are also characteristic functions.

Note that all the elements in \(\chi A\) and \(\chi B\) are uniformly bounded.

Remark 4.1

In the above extension, it is crucial that across the boundary the extended equation (5.6) is satisfied by \({\bar{f}}\) is weak sense. Namely, \({\bar{f}}\) should satisfy the following weak formation of equation (5.6) in the whole space

$$\begin{aligned}&\iint _{{\mathbb {R}}^3\!\times {\mathbb {R}}^3} \left[ ({\bar{f}}\Phi )(t)-({\bar{f}}\Phi )(0) \right] dydw +\int _0^t\int _{{\mathbb {R}}^3\times {\mathbb {R}}^3}{\bar{f}}{\mathcal {L}}_0\Phi dydwd\tau \\&\quad = \int _0^t\!\iint _{{\mathbb {R}}^3\!\times {\mathbb {R}}^3} \Big \{{\bar{f}} \big [(\partial _\tau +w\!\cdot \!\nabla _{\!y})\Phi \big ] + {\mathcal {S}}\Phi \Big \} dydwd\tau , \end{aligned}$$

where \(\Phi \in C_0^\infty ({\mathbb {R}}^{6+1})\) and the boundary term vanishes due to

$$\begin{aligned} {\bar{f}}(t ,y_1,y_2,0- ,w) = {\bar{f}}(t ,y_1,y_2,0+ ,w). \end{aligned}$$

1.2 \({\mathcal {S}}_{\mathcal {L}}^P\) Theory

For general interest, we summarize in the following properties of the operator \({\mathcal {L}}\) defined in (4.33). First of all, the following assumptions on the coefficients of \({\mathcal {L}}\) are imposed:

[H.1] \(a_{ij}=a_{ji}\in L^\infty ({\mathbb {R}}^{6+1})\), there exists \(\Lambda >0\) such that

$$\begin{aligned} \Lambda ^{-1}|\xi |^2\le \sum \limits _{i,j}^3a_{ij}\xi _i\xi _j\le \Lambda |\xi |^2. \end{aligned}$$

[H.2] The matrix \({\mathscr {B}}=(b_{ij})_{i,j=1,2,\cdots ,6}=\) has the following form

$$\begin{aligned} \begin{aligned}&\left( \begin{array} {ccccc} 0 \ \ \ &{} {\mathscr {B}}_1\ \ \ &{} 0 \ \ \ &{} \cdots \ \ \ &{} 0 \\[3mm] 0 \ \ \ &{} 0 \ \ \ &{} {\mathscr {B}}_2 \ \ \ &{} \cdots \ \ \ &{} 0 \\[3mm] \vdots \ \ \ &{} \vdots \ \ \ &{} \vdots \ \ \ &{} \ddots \ \ \ &{} \vdots \\[3mm] 0 \ \ \ &{} 0\ \ \ &{} 0 \ \ \ &{} \cdots \ \ \ &{} {\mathscr {B}}_r \\[3mm] 0 \ \ \ &{} 0\ \ \ &{} 0 \ \ \ &{} \cdots \ \ \ &{} 0 \end{array} \right) , \end{aligned} \end{aligned}$$

where each \({\mathscr {B}}_j\) is a \(m_{j-1}\times m_j\) block matrix of rank \(m_j\), with \(j=1,2,\cdots ,r\) and \(m_0\ge m_1\ge \cdots \ge m_r\ge 1\) and \(m_0+m_1+\cdots +m_r=6.\)

[H.3] The coefficients

$$\begin{aligned} a_{ij}({\mathbf {z}}) := a_{ij}(t,y,w)\,\in \, \mathrm{VMO}_{{\mathcal {L}}}\big ({\mathbb {R}}_t\!\times \!{\mathbb {R}}_y^3\!\times \!{\mathbb {R}}_w^3\big ), \end{aligned}$$

where the \(\mathrm{VMO}_{{\mathcal {L}}}\) space is defined as

$$\begin{aligned} \mathrm{BMO}_{{\mathcal {L}}}\big ({\mathbb {R}}^{6+1}\big )&\,:=\, \Big \{f\in L^1_\mathrm{loc}\big ({\mathbb {R}}^{6+1}\big ): \Vert f\Vert _{*}<+\infty \Big \} \,,\\ \mathrm{VMO}_{{\mathcal {L}}}\big ({\mathbb {R}}^{6+1}\big )&\,:=\, \Big \{f\in \mathrm{BMO}_{{\mathcal {L}}}\big ({\mathbb {R}}^{5+1}\big ): \lim _{r\rightarrow 0}\eta _f(r)=0 \Big \} \,, \end{aligned}$$

with

$$\begin{aligned} \Vert f\Vert _{*} \,:=&\, \sup _{{\bar{\rho }}>0}\frac{1}{|{\mathfrak {B}}_{{\bar{\rho }}}|}\int _{{\mathfrak {B}}_{{\bar{\rho }}}} \big |f({\mathbf {w}})-f_{{\mathfrak {B}}_{{\bar{\rho }}}}\big | d{\mathbf {w}},\ \ \eta _f(r) \,:=\, \sup _{{\bar{\rho }}\le r}\frac{1}{|{\mathfrak {B}}_{{\bar{\rho }}}|}\int _{{\mathfrak {B}}_{{\bar{\rho }}}} \big |f({\mathbf {w}})-f_{{\mathfrak {B}}_{\!{\bar{\rho }}}}\big | d{\mathbf {w}} \,,\\ f_{{\mathfrak {B}}_{\!{\bar{\rho }}}}=&\frac{1}{|{\mathfrak {B}}_{\!{\bar{\rho }}}|}\int _{{\mathfrak {B}}_{\!{\bar{\rho }}}}fd\mathbf{z}. \end{aligned}$$

Note that the quasi-distance d is chosen according to the following two definitions.

Definition 4.1

(Quasi-Norm) For any  \({\mathbf {z}}:=(t,y,w)\in {\mathbb {R}}^{6+1}\backslash \{{\mathbf {0}}\}\) , define the “quasi-norm”  \(\Vert {\mathbf {z}}\Vert :={\bar{\rho }}\)  to be the unique positive solution to the equation

$$\begin{aligned} \frac{t^2}{{\bar{\rho }}^4} + \frac{|y|^2}{{\bar{\rho }}^6} + \frac{|w|^2}{{\bar{\rho }}^2} =1; \end{aligned}$$

while if  \({\mathbf {z}}={\mathbf {0}}\) , we set  \(\Vert {\mathbf {z}}\Vert =0\).

Based on this quasi-norm, the quasi-distance is defined as

Definition 4.2

(Quasi-Distance) Let  \({\mathbf {z}}:=(t,y,w),\, {\mathbf {w}}:=(\tau ,y',w') \in {\mathbb {R}}^{6+1}\), define

$$\begin{aligned} d({\mathbf {z}},{\mathbf {w}}) := \big \Vert {\mathbf {w}}^{-1}\!\circ {\mathbf {z}}\big \Vert \,, \end{aligned}$$

where

$$\begin{aligned} {\mathbf {w}}^{-1}\!\circ {\mathbf {z}} \,:= (\tau ,y',w')^{-1}\! \circ (t,y,w) = \big (\,t-\tau ,\, y-y'-(t-\tau )w',\, w-w'\,\big ) \,. \end{aligned}$$

Furthermore, we define also the d-ball centered at \({\mathbf {z}}\) with radius r as

$$\begin{aligned} {\mathfrak {B}}_r({\mathbf {z}}) := \left\{ {\mathbf {w}}\in {\mathbb {R}}^{6+1}: d({\mathbf {z}},{\mathbf {w}}) <r \right\} \,. \end{aligned}$$

Note that \(({\mathbb {R}}_y^3\times {\mathbb {R}}_w^3,d\mathbf{z},d)\) is a metric measure space with “spatial homogeneous dimension" \(Q=12.\) Moreover, the quasi-distance d naturally induces a topology on \({\mathbb {R}}_t\!\times \!{\mathbb {R}}_y^3\!\times \!{\mathbb {R}}_w^3\), which allows us to define the Hölder space \(C^{\,k,\beta }_{\mathcal {L}}\) accordingly.

Definition 4.3

(\(C^{\,k,\beta }_{\mathcal {L}}\)  Space) Assume  \(\Pi \)  is an open set in \({\mathbb {R}}^{6+1}\). If there exist constants  \(\beta \in (0,1]\)  and  \(C_0>0\)  such that

$$\begin{aligned} \big |f({\mathbf {z}})-f({\mathbf {w}})\big | \,\le \, C_0 \big \Vert {\mathbf {w}}^{-1}\!\circ {\mathbf {z}}\big \Vert ^{\beta }, \end{aligned}$$

for every  \({\mathbf {z}}, {\mathbf {w}} \in \Pi \) . Then we call f satisfies \({\mathcal {L}}\)-Hölder condition, or has (uniform) \({\mathcal {L}}\) -Hölder continuity. In this case, f can be equipped with a semi-norm

$$\begin{aligned} |f|_{C^{\,0,\beta }_{\mathcal {L}}(\Pi )} \,:= \sup _{{\mathbf {z}}\ne {\mathbf {w}}\in \Pi } \frac{|f({\mathbf {z}})-f({\mathbf {w}})|}{\Vert {\mathbf {w}}^{-1}\!\circ {\mathbf {z}}\Vert ^{\beta }} \;. \end{aligned}$$

Additionally, if the function f  and its derivatives up to order k  are bounded on the closure of \(\Pi \) (bounded), then the  \({\mathcal {L}}\) -Hölder space  \(C^{\,k,\beta }_{\mathcal {L}}({\bar{\Pi }})\)  is a Banach space with respect to the norm

$$\begin{aligned} \Vert f\Vert _{C^{\,k,\beta }_{\mathcal {L}}} \,:=\, \Vert f\Vert _{C^k} +\, \max _{|\alpha '|=k} \big |D^{\alpha '}\!f \big |_{C^{\,0,\beta }_{\mathcal {L}}} \;, \end{aligned}$$

and

$$\begin{aligned} \Vert f\Vert _{C^k(\Pi )} \,:=\, \max _{|\alpha '|\le k}\, \sup _{{\mathbf {z}}\in \Pi } \big |D^{\alpha '}\!f({\mathbf {z}}) \big | \;. \end{aligned}$$

The following lemma from [2, 34] is used in the proof of (4.31).

Lemma 4.2

Let \(\Pi \) be a bounded open set in \({\mathbb {R}}_t\times {\mathbb {R}}^3_y\times {\mathbb {R}}^3_w\), and f be a solution of \({\mathcal {L}}f={\mathcal {S}}\). Suppose that the conditions [H.1][H.3] are satisfied in \(\Pi \), and that \(f\in L^p(\Pi )\), \({\mathcal {S}}\in L^{p}(\Pi )\) with \(p\in (1,\infty )\). Then \({\mathcal {Y}}f\in L^{p}_\mathrm{{loc}}(\Pi )\), \(\partial _{v_i v_j}f\in L^{p}_\mathrm{{loc}}(\Pi )\; (i,j=1,2,3)\). More precisely, for every open subset  \(\Pi '\subset \subset \Pi \), it holds

$$\begin{aligned} \big \Vert {\mathcal {Y}}f\big \Vert _{L^{p}(\Pi ')}&\,\le \, C_1 \left( \Vert {\mathcal {S}}\Vert _{L^{p}(\Pi )} + \Vert f\Vert _{L^p(\Pi )} \right) , \\ \big \Vert D^2_{vv}f\big \Vert _{L^{p}(\Pi ')}&\,\le \, C_1 \left( \Vert {\mathcal {S}}\Vert _{L^{p}(\Pi )} + \Vert f\Vert _{L^p(\Pi )} \right) , \end{aligned}$$

where \(C_1>0\) depends on p, \(\mathrm{dist}(\Pi ',\Pi )\), eigenvalues (elliptic constant) of \((a_{ij}({\mathbf {z}}))\), \(\alpha \) and \(C_0\) related to the Hölder semi-norm of \(a_{ij}({\mathbf {z}})\).

Finally, the following lemma provides us the embedding estimates of Sobolev type space \({\mathcal {S}}_{{\mathcal {L}}}^p\) defined by (4.32) and Morrey type space, cf. [2, 34].

Lemma 4.3

For any \(u\in S^{p}_{{\mathcal {L}}}({\mathbb {R}}_t\!\times \!{\mathbb {R}}_y^3\!\times \!{\mathbb {R}}_w^3)\) with \(p\in (1,\infty )\), if \(7<p<14\), then \(u\in C^{0,\beta }_{\mathcal {L}}({\mathbb {R}}_t\!\times \!{\mathbb {R}}_y^3\!\times \!{\mathbb {R}}_w^3)\)  with \(\beta = 2-\frac{14}{p} \in (0,1)\), such that

$$\begin{aligned} |u|_{C^{\,0,\beta }_{\mathcal {L}}} \lesssim \Vert u\Vert _{S^{p}_{{\mathcal {L}}}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, S. & Yang, T. The Navier–Stokes–Vlasov–Fokker–Planck System in Bounded Domains. J Stat Phys 186, 42 (2022). https://doi.org/10.1007/s10955-022-02886-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-022-02886-7

Keywords

Mathematics Subject Classification

Navigation