Skip to main content
Log in

On the Correlation Functions of the Characteristic Polynomials of Non-Hermitian Random Matrices with Independent Entries

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The paper is concerned with the asymptotic behavior of the correlation functions of the characteristic polynomials of non-Hermitian random matrices with independent entries. It is shown that the correlation functions behave like that for the Complex Ginibre Ensemble up to a factor depending only on the fourth absolute moment of the common probability law of the matrix entries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and below we omit Z only if \(Z = {{\,\mathrm{diag}\,}}\{z_1, \ldots , z_m\}\).

References

  1. Akemann, G., Kanzieper, E.: Integrable structure of Ginibre’s ensemble of real random matrices and a Pfaffian integration theorem. J. Stat. Phys. 129(5–6), 1159–1231 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Akemann, G., Vernizzi, G.: Characteristic polynomials of complex random matrix models. Nucl. Phys. B 660(3), 532–556 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berezin, F.A.: Introduction to superanalysis. Number 9 in Math. Phys. Appl. Math. D. Reidel Publishing Co., Dordrecht, (1987) (Edited and with a foreword by A.A. Kirillov. With an appendix by V.I. Ogievetsky. Trans. from the Russian by J. Niederle and R. Kotecký. Trans. D. Leĭtes (ed.))

  4. Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. Commun. Pure Appl. Math. 59(2), 161–253 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brézin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, 111–135 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brézin, E., Hikami, S.: Characteristic polynomials of real symmetric random matrices. Commun. Math. Phys. 223, 363–382 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Disertori, M., Lohmann, M., Sodin, S.: The density of states of 1D random band matrices via a supersymmetric transfer operator. arXiv:1810.13150v1 [math.PR] (2018)

  9. Disertori, M., Spencer, T., Zirnbauer, M.R.: Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model. Commun. Math. Phys. 300(2), 435–486 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Efetov, K.: Supersymmetry in Disorder and Chaos. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  11. Efetov, K.B.: Supersymmetry and theory of disordered metals. Adv. Phys. 32(1), 53–127 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Forrester, P.J.: Fluctuation formula for complex random matrices. J. Phys. A 32(13), L159–L163 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fyodorov, Y.V., Sommers, H.-J.: Random matrices close to Hermitian or unitary: overview of methods and results. J. Phys. A 36(12), 3303–3347 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fyodorov, Y.V., Khoruzhenko, B.A.: Systematic analytical approach to correlation functions of resonances in quantum chaotic scattering. Phys. Rev. Lett. 83(1), 65–68 (1999)

    Article  ADS  Google Scholar 

  15. Fyodorov, Y.V., Mirlin, A.D.: Localization in ensemble of sparse random matrices. Phys. Rev. Lett. 67, 2049–2052 (1991)

    Article  ADS  Google Scholar 

  16. Fyodorov, Y.V., Strahov, E.: An exact formula for general spectral correlation function of random Hermitian matrices. Random matrix theory. J. Phys. A 36(12), 3203–3214 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Girko, V.L.: The circular law. Teor. Veroyatnost. i Primenen. 29(4), 669–679 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Girko, V.L.: The circular law: ten years later. Random Oper. Stoch. Equ 2(3), 235–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Girko, V.L.: The strong circular law. Twenty years later. I. Random Oper. Stoch. Equ. 12(1), 49–104 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Girko, V.L.: The strong circular law. Twenty years later. II. Random Oper. Stoch. Equ. 12(3), 255–312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Girko, V.L.: The circular law. Twenty years later. III. Random Oper. Stoch. Equ. 13(1), 53–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guhr, T.: Supersymmetry. In: Akemann, G., Baik, J., Francesco, P.D. (eds.) The Oxford Handbook of Random Matrix Theory, Chap. 7, pp. 135–154. Oxford University Press, Oxford (2015)

    Google Scholar 

  24. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. American Mathematical Society, Providence, RI (1963)

    Book  Google Scholar 

  25. Kopel, P.: Linear statistics of non-Hermitian matrices matching the real or complex Ginibre ensemble to four moments. arXiv:1510.02987v1 [math.PR] (2015)

  26. Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967)

    MATH  Google Scholar 

  27. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press Inc., Boston (1991)

    MATH  Google Scholar 

  28. Mirlin, A.D., Fyodorov, Y.V.: Universality of level correlation function of sparse random matrices. J. Phys. A 24, 2273–2286 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Recher, C., Kieburg, M., Guhr, T., Zirnbauer, M.R.: Supersymmetry approach to Wishart correlation matrices: exact results. J. Stat. Phys. 148(6), 981–998 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Rider, B., Silverstein, J.: Gaussian fluctuations for non-Hermitian random matrix ensembles. Ann. Probab. 34(6), 2118–2143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rider, B., Virag, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN (2007). https://doi.org/10.1093/imrn/rnm006

  32. Shcherbina, M., Shcherbina, T.: Transfer matrix approach to 1d random band matrices: density of states. J. Stat. Phys. 164(6), 1233–1260 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Shcherbina, M., Shcherbina, T.: Characteristic polynomials for 1D random band matrices from the localization side. Commun. Math. Phys. 351(3), 1009–1044 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Shcherbina, M., Shcherbina, T.: Universality for 1d random band matrices: sigma-model approximation. J. Stat. Phys. 172(2), 627–664 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Shcherbina, T.: On the correlation function of the characteristic polynomials of the Hermitian Wigner ensemble. Commun. Math. Phys. 308, 1–21 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Shcherbina, T.: On the correlation functions of the characteristic polynomials of the Hermitian sample covariance matrices. Probab. Theory Relat. Fields 156, 449–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach. Commun. Math. Phys. 241(2–3), 343–382 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Tao, T., Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38(5), 2023–2065 (2010). With an appendix by Manjunath Krishnapur

    Article  MathSciNet  MATH  Google Scholar 

  39. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43(2), 782–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vinberg, E.B.: A Course in Algebra. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  41. Webb, C., Wong, M.D.: On the moments of the characteristic polynomial of a Ginibre random matrix. Proc. Lond. Math. Soc. (3) 118(5), 1017–1056 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. M. Shcherbina for the statement of the problem and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ie. Afanasiev.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by The President of Ukraine Grant and by the Akhiezer Foundation scholarship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, I. On the Correlation Functions of the Characteristic Polynomials of Non-Hermitian Random Matrices with Independent Entries. J Stat Phys 176, 1561–1582 (2019). https://doi.org/10.1007/s10955-019-02353-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02353-w

Keywords

Navigation