Skip to main content
Log in

Zeros of Generalized Hermite Polynomials and Ensemble of Gaussian Random Matrices

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

The main purpose of the present paper is to investigate the global asymptotic eigenvalue density of the fixed-trace generalized Gaussian ensemble of random matrices. To answer such a question, we begin with a complete study of the zeros of generalized Hermite orthogonal polynomials which are closely related to the eigenvalues in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Forrester, Log-Gases and Random Matrices (Princeton University Press, 2010).

    Book  Google Scholar 

  2. F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy (American Mathematical Society, 2000), Vol. 77.

    MATH  Google Scholar 

  3. I. Dumitriu, “Eigenvalue statistics for beta-ensembles,” Ph. D thesis, Department of Mathematics, MIT, No. (2003).

  4. I. Dumitriu and A. Edelman, “Matrix models for beta ensembles,” J. Math. Phys 43 (11), 5830–5847 (2002).

    Article  MathSciNet  Google Scholar 

  5. W. Feller, An Introduction to Probability Theory and Its Applications (Wisely, 1971), Vol. II.

    MATH  Google Scholar 

  6. U. Haagerup and S. Thorbjornsen, “Random matrices with complex Gaussian entries,” Expo. Math 21, 293–337 (2003).

    Article  MathSciNet  Google Scholar 

  7. K. Johansson, “On fluctuation of eigenvalues of random Hermitian matrices,” Duke. Math. J 91 (1), 151–204 (1998).

    Article  MathSciNet  Google Scholar 

  8. Z. Da-Sheng, L. Dang-Zheng, and Q. Tao, “Fixed trace \(\beta\)-Hermite ensembles: Asymptotic eigenvalue density and the edge of the density,” J. Math. Phys 51 (3), 033301–0333019 (2010).

    Article  MathSciNet  Google Scholar 

  9. M. Bouali, “On the \(\beta\)-matrix models with singular potential,” Math. Notes 104 (2), 19–40 (2018).

    MathSciNet  MATH  Google Scholar 

  10. M. Bouali, “Generalized Gaussian random unitary matrices ensemble,” JPGT Jour of Geom and Top 14 (1), 57–84 (2014).

    MathSciNet  MATH  Google Scholar 

  11. D. Xu and L. Wang, “A new proof of semicircle law of fixed trace square ensemble,” arXiv:0804.2228v2. (2008).

    Google Scholar 

  12. A. B. De Monvel, L. Pastur, and M. Scherbina, “On the statistical mechanics approch in the Random matrix theory: Integrated density of states,” J. Stat. Phys 79 (3), 585–611 (1995).

    Article  Google Scholar 

  13. P. Deift, T. Kriecherbauer, and K. McLaughlin, “New results on the equilibrium measure for logarithmic potentials in the presence of an external field,” J. Approx. Theory 95 (3), 388–475 (1998).

    Article  MathSciNet  Google Scholar 

  14. M. Rosenblum, “Generalized Hermite polynomials and the bose-like oscillator calculus, nonselfadjoint operators and related topics operator theory,” Ad. App 73, 369–396 (1994).

    MATH  Google Scholar 

  15. M. Rösler, “Generalized Hermite polynomials and the heat equation for Dunkl operators,” Commun. Math. Phys 192, 519–542 (1998).

    Article  MathSciNet  Google Scholar 

  16. M. F. E. de Jeu, The Dunkl Transform, 2nd ed. (Springer-Verlag, Berlin, 1993).

    MATH  Google Scholar 

  17. F. J. Dayson, “A brownian-motion model for the eigenvalues of a random matrix,” J. Math. Phys 3 (6), 1191–1198 (1962).

    Article  MathSciNet  Google Scholar 

  18. S. Andraus, M. Katori, and S. Miyashita, “Interacting particles on the line and Dunkl intertwining operator of type A: Application to the freezing regime,” J. Phys (A). Math. Theor 45 (39) (2011).

    MathSciNet  MATH  Google Scholar 

  19. J. Jacques, “Logarithmic potential theory, orthogonal polynomials, and random matrices,” Lectures Notes of CIMPA-Fecyt-Unesco-ANR, Hermann (2014).

    Google Scholar 

  20. E. B. Saff and V. Totik, Logarithmic Potentials with External Fields (Springer-Verlag, Berlin Heidelberg, 1997).

    Book  Google Scholar 

  21. P. Simeonov, “Zero distribution of sequences of classical orthogonal polynomials,” Abst. App. Ana, 985–993 (2003).

    Article  MathSciNet  Google Scholar 

  22. G. Szegö, Orthogonal Polynomials (American Mathematical Society, 1939).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bouali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouali, M., Hamouda, M.S. & Al Jeaid, H.K. Zeros of Generalized Hermite Polynomials and Ensemble of Gaussian Random Matrices. Math Notes 112, 40–58 (2022). https://doi.org/10.1134/S0001434622070045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434622070045

Keywords

Navigation