Skip to main content
Log in

On the Correlation Functions of the Characteristic Polynomials of the Sparse Hermitian Random Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider asymptotics of the correlation functions of characteristic polynomials corresponding to random weighted \(G(n, \frac{p}{n})\) Erdős–Rényi graphs with Gaussian weights in the case of finite p and also when \(p \rightarrow \infty \). It is shown that for finite p the second correlation function demonstrates a kind of transition: when \(p < 2\) it factorizes in the limit \(n \rightarrow \infty \), while for \(p > 2\) there appears an interval \((-\lambda _*(p), \lambda _*(p))\) such that for \(\lambda _0 \in (-\lambda _*(p), \lambda _*(p))\) the second correlation function behaves like that for Gaussian unitary ensemble (GUE), while for \(\lambda _0\) outside the interval the second correlation function is still factorized. For \(p \rightarrow \infty \) there is also a threshold in the behavior of the second correlation function near \(\lambda _0 = \pm 2\): for \(p \ll n^{2/3}\) the second correlation function factorizes, whereas for \(p \gg n^{2/3}\) it behaves like that for GUE. For any rate of \(p \rightarrow \infty \) the asymptotics of correlation functions of any even order for \(\lambda _0 \in (-2, 2)\) coincide with that for GUE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, M., Golinelli, O.: Random incidence matrices: moments and spectral density. J. Stat. Phys. 103, 301–337 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Brezin, E., Hikami, S.: Characteristic polynomials of random matrices. Commun. Math. Phys. 214, 111–135 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Brezin, E., Hikami, S.: Characteristic polynomials of real symmetric random matrices. Commun. Math. Phys. 223, 363–382 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős - Rényi Graphs II: eigenvalue spacing and the extreme eigenvalues. Commun. Math. Phys. 314(3), 587–640 (2012)

    Article  ADS  MATH  Google Scholar 

  5. Evangelou, S.N., Economou, E.N.: Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. Phys. Rev. Lett. 68, 361–364 (1992)

    Article  ADS  Google Scholar 

  6. Fyodorov, Y.V., Keating, J.P.: Negative moments of characteristic polynomials of random GOE matrices and singularity-dominated strong fluctuations. J. Phys. A Math. Gen. 36, 4035–4046 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fyodorov, Y.V., Khoruzhenko, B.A.: On absolute moments of characteristic polynomials of a certain class of complex random matrices. Commun. Math. Phys. 273, 561–599 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fyodorov, Y.V., Mirlin, A.D.: Localization in ensemble of sparse random matrices. Phys. Rev. Lett. 67, 2049–2052 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Götze, F., Kösters, H.: On the second-order correlation function of the characteristic polynomial of a Hermitian Wigner matrix. Commun. Math. Phys. 285, 1183–1205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, J., Landon, B., Yau, H.-T.: Bulk universality of sparse random matrices, arXiv:1504.05170v2 [math.PR] (2015)

  11. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2+ it)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Khorunzhiy, O.: On high moments and the spectral norm of large dilute Wigner random matrices. Zh. Mat. Fiz. Anal. Geom. 10(1), 64–125 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Khorunzhiy, O.: On high moments of strongly diluted large Wigner random matrices, arXiv:1311.7021v4 [math.PH] (2015)

  14. Khorunzhy, O., Shcherbina, M., Vengerovsky, V.: Eigenvalue distribution of large weighted random graphs. J. Math. Phys. 45(4), 1648–1672 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kühn, R.: Spectra of sparse random matrices. J. Phys. A 41(29), 295002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mehta, M.L.: Random Matrices. Academic Press Inc., Boston (1991)

    MATH  Google Scholar 

  17. Mehta, M.L., Normand, J.-M.: Moments of the characteristic polynomial in the three ensembles of random matrices. J. Phys. A Math. Gen. 34, 4627–4639 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mirlin, A.D., Fyodorov, Y.V.: Universality of level correlation function of sparse random matrices. J. Phys. A 24, 2273–2286 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G. Pólya, G. Szegő, Problems and Theorems in Analysis. Vol. II. Theory of Functions, Zeros, Polynomials, Determinants, Number Theory, Geometry. Die Grundlehren der Math. Springer, New York (1976)

  20. Rodgers, G.J., Bray, A.J.: Density of states of a sparse random matrix. Phys. Rev. B 37, 3557–3562 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rodgers, G.J., De Dominicis, C.: Density of states of sparse random matrices. J. Phys. A Math. Gen. 23, 1567–1573 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Shcherbina, T.: On the correlation function of the characteristic polynomials of the Hermitian Wigner ensemble. Commun. Math. Phys. 308, 1–21 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Shcherbina, T.: On the correlation functions of the characteristic polynomials of the Hermitian sample covariance matrices. Probab. Theory Relat. Fields 156, 449–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shcherbina, T.: On the second mixed moment of the characteristic polynomials of 1D band matrices. Commun. Math. Phys. 328(1), 45–82 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shcherbina, T.: Universality of the second mixed moment of the characteristic polynomials of the 1D band matrices: real symmetric case. J. Math. Phys. 56, 063303 (2015). doi:10.1063/1.4922621

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Shcherbina, M., Tirozzi, B.: Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs. J. Math. Phys. 51(2), 023523 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Shcherbina, M., Tirozzi, B.: Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs: diluted regime. J. Math. Phys. 53(4), 043501 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sodin, S.: The Tracy-Widom law for some sparse random matrices. J. Stat. Phys. 136, 834–841 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Strahov, E., Fyodorov, Y.V.: Universal results for correlations of characteristic polynomials: Riemann-Hilbert approach. Commun. Math. Phys. 241, 343–382 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Vinberg, E.B.: A Course in Algebra. American Mathematical Society, Providence (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. M. Shcherbina for statement of the problem and for fruitful discussions. The author is thankful to the Akhiezer Foundation for partial financial support. The author also thanks reviewers for carefully reading of the paper and for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ie. Afanasiev.

Appendix

Appendix

1.1 Grassmann Variables

Consider the set of formal variables \(\{\psi _j,\, \overline{\psi }_j\}_{j=1}^n\) which satisfy the anticommutation relations

$$\begin{aligned} \psi _j \psi _k + \psi _k \psi _j = \overline{\psi }_j \psi _k + \psi _k \overline{\psi }_j = \overline{\psi }_j \overline{\psi }_k + \overline{\psi }_k \overline{\psi }_j = 0. \end{aligned}$$

This set generates a graded algebra \(\mathcal {A}\), which is called the Grassmann algebra. Taking into account that \(\psi _j^2 = \overline{\psi }_j^2 = 0\), we have that all elements of \(\mathcal {A}\) are polynomials of \(\{\psi _j,\, \overline{\psi }_j\}_{j=1}^n\). We can also define functions of Grassmann variables. Let \(\chi \) be an element of \(\mathcal {A}\) and f be any analytical function. By \(f(\chi )\) we mean the element of \(\mathcal {A}\) obtained by substituting \(\chi - z_0\) in the Taylor series of f near \(z_0\), where \(z_0\) is a free term of \(\chi \). Since \(\chi - z_0\) is a polynomial of \(\{\psi _j,\, \overline{\psi }_j\}_{j=1}^n\) with zero free term, there exists \(l \in \mathbb {N}\) such that \((\chi - z_0)^l = 0\), and hence the series terminates after a finite number of terms.

The integral over the Grassmann variables is a linear functional, defined on the basis by the relations

$$\begin{aligned} \int d\psi _j=\int d\overline{\psi }_k = 0, \qquad \int \psi _j d\psi _j=\int \overline{\psi }_k d\overline{\psi }_k = 1. \end{aligned}$$

A multiple integral is defined to be the repeated integral. Moreover “differentials” \(\{d\psi _j,\, d\overline{\psi }_j\}_{j=1}^n\) anticommute with each other and with \(\{\psi _j,\, \overline{\psi }_j\}_{j=1}^n\). Hence for a function f

$$\begin{aligned} f(\psi _1, \ldots , \psi _n) = a_0 + \sum \limits _{j=1}^n a_j \psi _j + \ldots + a_{1, \ldots , n} \prod \limits _{j=1}^n \psi _j \end{aligned}$$

we have by definition

$$\begin{aligned} \int f(\psi _1, \ldots , \psi _n)d\psi _n \ldots d\psi _1 = a_{1, \ldots , n}. \end{aligned}$$

The use of Grassmann variables for computing averages of determinants rests on the following identity, valid for any \(n \times n\) matrix A:

$$\begin{aligned} \int \exp \bigg \{ -\sum \limits _{j,k=1}^n \overline{\psi }_jA_{jk}\psi _k \bigg \} \prod \limits _{j=1}^n d\overline{\psi }_j d\psi _j = \det {A}. \end{aligned}$$
(6.1)

The one more identity is the Hubbard-Stratonovich transformation

$$\begin{aligned} e^{y^2} = \frac{a}{\sqrt{\pi }}\int e^{2axy - a^2x^2} dx,\nonumber \\ e^{yt} = \frac{a^2}{\pi }\int e^{ay(u + iv) + at(u - iv) - a^2u^2 - a^2v^2} du dv. \end{aligned}$$
(6.2)

which valid for any complex numbers y, t and any positive number a. The identities (6.2) also hold when y, t are arbitrary even Grassmann variables (i.e. sums of the products of even number of Grassmann variables). For even Grassmann variables the formulas can be proved by Taylor-expanding \(e^{2axy}\) and \(e^{ay(u + iv) + at(u - iv)}\) into the series and integrating each term.

The properties explained so far suffice to obtain the integral representation for \(F_{2m}\), \(m = 1\), whereas the general case \(m > 1\) requires some additional preliminaries, pertaining to antisymmetric tensor products. Further details about antisymmetric tensor products may be found in [30, Chapter 8.4].

1.1.1 Grassmann Variables and the Exterior Product

The exterior product of vectors is well-known, as well as the exterior product of alternating multilinear forms (see [30]). However, to prove Proposition 1 we need the exterior product of alternating operators. Define it as following. Let A be a linear operator on \(\Lambda ^q \mathbb {C}^n\) and B be a linear operator on \(\Lambda ^r \mathbb {C}^n\). Then the exterior product \(A \wedge B\) is the restriction of the linear operator \({\text {Alt}} \circ (A \otimes B)\) on the \(\Lambda ^{q + r} \mathbb {C}^n\). Here \({\text {Alt}}\) is the operator of the alternation, i.e.,

$$\begin{aligned} {\text {Alt}}(t) = \frac{1}{k!}\sum \limits _{\pi \in S_k} {\text {sgn}} \pi f_\pi (t), \quad t \in \Lambda ^k V, \end{aligned}$$

where \(S_k\) is the group of permutations of length k; \({\text {sgn}} \pi \) is the sign of permutation \(\pi \); \(f_\pi \) is the canonical automorphism of \(V^{\otimes k}\), which carries \(v_1 \otimes \ldots \otimes v_k\) to \(v_{\pi (1)} \otimes \ldots \otimes v_{\pi (k)}\), \(v_j \in V\); V is some finite-dimensional linear space. Note, that for \(A \in {{\mathrm{End}}}V\) the exterior product \(A \wedge A\) coincides with the well-known second exterior power of linear operator A.

Fix some basis \(\{ e_j \}_{j = 1}^n\) of \(\mathbb {C}^n\). Let \(A \in {{\mathrm{End}}}\Lambda ^k \mathbb {C}^n\) and \(\alpha , \beta \in I_{n,k}\), where \(I_{n, k}\) is defined in (2.2). By \(A_{\alpha \beta }\) we denote the corresponding entry of the matrix of A in the basis \(\{e_{\alpha _1} \wedge \ldots \wedge e_{\alpha _k},\, \alpha \in I_{n,k}\}\).

To obtain the integral representation for \(F_{2m}\) we use the lemma:

Lemma 6

Let A and B be linear operators on \(\Lambda ^q \mathbb {C}^n\) and \(\Lambda ^r \mathbb {C}^n\) respectively. Then

$$\begin{aligned} \sum \limits _{\alpha , \beta \in I_{n, q}} A_{\alpha \beta } \prod \limits _{j = 1}^q \overline{\psi }_{\alpha _j}\psi _{\beta _j} \cdot \sum \limits _{\gamma , \delta \in I_{n, r}} B_{\gamma \delta } \prod \limits _{j = 1}^r \overline{\psi }_{\gamma _j}\psi _{\delta _j} \\ = \left( {\begin{array}{c}q + r\\ q\end{array}}\right) \sum \limits _{\alpha , \beta \in I_{n, q + r}}(A \wedge B)_{\alpha \beta } \prod \limits _{j = 1}^{q + r} \overline{\psi }_{\alpha _j}\psi _{\beta _j}. \end{aligned}$$

Proof

Let \(S_{q, r}\) be the set of such \(\pi \in S_{q + r}\) that satisfy inequalities \(\pi (1) < \ldots < \pi (q)\) and \(\pi (q + 1) < \ldots < \pi (q + r)\). Then

$$\begin{aligned}&\sum \limits _{\alpha , \beta \in I_{n, q}} A_{\alpha \beta } \prod \limits _{j = 1}^q \overline{\psi }_{\alpha _j}\psi _{\beta _j} \cdot \sum \limits _{\gamma , \delta \in I_{n, r}} B_{\gamma \delta } \prod \limits _{j = 1}^r \overline{\psi }_{\gamma _j}\psi _{\delta _j} \\&\quad = \sum \limits _{\alpha , \beta \in I_{n, q + r}}\sum \limits _{\pi , \sigma \in S_{q, r}} {\text {sgn}} \pi {\text {sgn}} \sigma A_{\alpha _{\pi }' \beta _{\sigma }'} B_{\alpha _{\pi }'' \beta _{\sigma }''} \prod \limits _{j = 1}^{q + r} \overline{\psi }_{\alpha _j}\psi _{\beta _j}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{\pi }&= (\alpha _{\pi (1)}, \ldots , \alpha _{\pi (q + r)}), \\ \alpha '&= (\alpha _{1}, \ldots , \alpha _{q}) \in I_{n,q}, \\ \alpha ''&= (\alpha _{q + 1}, \ldots , \alpha _{q + r}) \in I_{n,r}. \end{aligned}$$

On the other hand,

$$\begin{aligned} (A \otimes B)(e_{\beta '} \wedge e_{\beta ''})= & {} (A \otimes B)\bigg (\frac{1}{(q + r)!} \sum \limits _{\sigma \in S_{q + r}} {\text {sgn}} \sigma f_\sigma (e_{\beta '} \otimes e_{\beta ''})\bigg ) \\= & {} \frac{q!r!}{(q + r)!} (A \otimes B)\bigg ( \sum \limits _{\sigma \in S_{q,r}} {\text {sgn}} \sigma f_\sigma (e_{\beta '} \otimes e_{\beta ''})\bigg ) \\= & {} \frac{q!r!}{(q + r)!} \sum \limits _{\begin{array}{c} \alpha \in I_{n,q} \\ \gamma \in I_{n,r} \end{array}} \bigg ( \sum \limits _{\sigma \in S_{q, r}} {\text {sgn}} \sigma A_{\alpha \beta _\sigma '} B_{\gamma \beta _\sigma ''}\bigg ) e_{\alpha } \otimes e_{\gamma }, \end{aligned}$$

where \(e_\alpha = e_{\alpha _1} \wedge \ldots \wedge e_{\alpha _q}\), \(\alpha \in I_{n, q}\).

Hence,

$$\begin{aligned} {\text {Alt}}((A \otimes B)(e_{\beta '} \wedge e_{\beta ''}))= & {} \frac{q!r!}{(q + r)!} \sum \limits _{\begin{array}{c} \alpha \in I_{n,q} \\ \gamma \in I_{n,r} \end{array}} \bigg ( \sum \limits _{\sigma \in S_{q, r}} {\text {sgn}} \sigma A_{\alpha \beta _\sigma '} B_{\gamma \beta _\sigma ''}\bigg ) e_{\alpha } \wedge e_{\gamma } \\= & {} \frac{q!r!}{(q + r)!} \sum \limits _{\alpha \in I_{n,q + r}} \sum \limits _{\pi , \sigma \in S_{q, r}} {\text {sgn}} \sigma A_{\alpha _\pi ' \beta _\sigma '} B_{\alpha _\pi '' \beta _\sigma ''} e_{\alpha _\pi '} \wedge e_{\alpha _\pi ''} \\= & {} \frac{q!r!}{(q + r)!} \sum \limits _{\alpha \in I_{n,q + r}} \sum \limits _{\pi , \sigma \in S_{q, r}} {\text {sgn}} \pi {\text {sgn}} \sigma A_{\alpha _\pi ' \beta _\sigma '} B_{\alpha _\pi '' \beta _\sigma ''} e_{\alpha '} \wedge e_{\alpha ''}. \end{aligned}$$

Thus,

$$\begin{aligned} (A \wedge B)_{\alpha \beta } = \frac{q!r!}{(q + r)!} \sum \limits _{\pi , \sigma \in S_{q, r}} {\text {sgn}} \pi {\text {sgn}} \sigma A_{\alpha _\pi ' \beta _\sigma '} B_{\alpha _\pi '' \beta _\sigma ''}, \end{aligned}$$

which completes the proof of the lemma. \(\square \)

We also need some properties of the exterior product of the operators.

Proposition 2

Let \(A_j \in {\text {End}} \Lambda ^{q_j} \mathbb {C}^n\), \(j = \overline{1, k}\), and \(B \in {\text {End}} \mathbb {C}^n\). Then

  1. (i)

    \(A_1 \wedge A_2 = A_2 \wedge A_1\);

  2. (ii)

    \((A_1 \wedge A_2) \wedge A_3 = A_1 \wedge (A_2 \wedge A_3)\);

  3. (iii)

    \(\bigwedge \limits _{j = 1}^k A_j = \Big ( {\text {Alt}} \circ \bigotimes \limits _{j = 1}^k A_j \Big )\Big |_{\Lambda ^q \mathbb {C}^n}\);

  4. (iv)

    \(\bigwedge \limits _{j = 1}^k A_jB^{\wedge q_j} = \Big ( \bigwedge \limits _{j = 1}^k A_j \Big )B^{\wedge q}\) and \(\bigwedge \limits _{j = 1}^k B^{\wedge q_j}A_j = B^{\wedge q}\Big ( \bigwedge \limits _{j = 1}^k A_j \Big )\);

where \(q = \sum \limits _{j = 1}^k q_j\), \(B^{\wedge q} = \underbrace{B \wedge \ldots \wedge B}_{q \text { times}}\).

Proof

Assertions (i) and (ii) follow from Lemma 1 and from Grassmann variables multiplication’s anticommutativity and associativity.

(iii) Consider the case \(k = 3\).

$$\begin{aligned}&A_1 \wedge A_2 \wedge A_3 = {\text {Alt}} \circ ((I \circ A_1) \otimes ({\text {Alt}} \circ (A_2 \otimes A_3))) \\&\quad = {\text {Alt}} \circ (I \otimes {\text {Alt}}) \circ (A_1 \otimes A_2 \otimes A_3) = {\text {Alt}} \circ (A_1 \otimes A_2 \otimes A_3), \end{aligned}$$

where I is the identity operator.

The general case follows from the induction.

(iv) By definition, we have

$$\begin{aligned} \bigwedge \limits _{j = 1}^k B^{\wedge q_j}A_j = {\text {Alt}} \circ \bigotimes \limits _{j = 1}^k B^{\wedge q_j} A_j. \end{aligned}$$

Consider \(({\text {Alt}} \circ B^{\otimes q_j})(v_1 \otimes \ldots \otimes v_{q_j})\), \(v_l \in \mathbb {C}^n\)

$$\begin{aligned} ({\text {Alt}} \circ B^{\otimes q_j})(v_1 \otimes \ldots \otimes v_{q_j})= & {} \frac{1}{q_j!} \sum \limits _{\pi \in S_{q_j}} {\text {sgn}} \pi f_\pi (Bv_1 \otimes \ldots \otimes Bv_{q_j}) \\= & {} \frac{1}{q_j!} \sum \limits _{\pi \in S_{q_j}} {\text {sgn}} \pi Bv_{\pi (1)} \otimes \ldots \otimes Bv_{\pi (q_j)} \\= & {} \frac{1}{q_j!} \sum \limits _{\pi \in S_{q_j}} {\text {sgn}} \pi B^{\otimes q_j}(f_\pi (v_1 \otimes \ldots \otimes v_{q_j}))\\= & {} (B^{\otimes q_j} \circ {\text {Alt}})(v_1 \otimes \ldots \otimes v_{q_j}). \end{aligned}$$

Therefore, \({\text {Alt}} \circ B^{\otimes q_j} = B^{\otimes q_j} \circ {\text {Alt}}\), in particular, \(B^{\wedge q_j} = \left. B^{\otimes q_j} \right| _{\Lambda ^{q_j} \mathbb {C}^n}\). Thus,

$$\begin{aligned} \bigwedge \limits _{j = 1}^k B^{\wedge q_j}A_j = {\text {Alt}} \circ \bigotimes \limits _{j = 1}^k B^{\otimes q_j} A_j&= {\text {Alt}} \circ B^{\otimes q} \circ \bigg (\bigotimes \limits _{j = 1}^k A_j\bigg ) \\&= B^{\otimes q} \circ {\text {Alt}} \circ \bigg (\bigotimes \limits _{j = 1}^k A_j\bigg ) = B^{\wedge q}\bigg ( \bigwedge \limits _{j = 1}^k A_j \bigg ). \end{aligned}$$

The proof of the second formula is similar. \(\square \)

1.2 The Harish-Chandra/Itsykson–Zuber formula

For computing the integral over the unitary group, the following Harish-Chandra/Itsykson–Zuber formula is used

Proposition 3

Let A be a normal \(n \times n\) matrix with distinct eigenvalues \(\{a_j\}_{j = 1}^n\) and \(B = {{\mathrm{diag}}}\{b_j\}_{j = 1}^n\), \(b_j \in \mathbb {R}\). Then

$$\begin{aligned} \int \limits _{U_n} \exp \{z{{\mathrm{tr}}}AU^*BU\}dU_n(U) = \bigg (\prod \limits _{j = 1}^{n - 1} j!\bigg ) \frac{\det \{\exp (za_jb_k)\}_{j,k = 1}^n}{z^{(n^2 - n)/2}\Delta (A)\Delta (B)}, \end{aligned}$$

where z is come constant, \(\Delta (A) = \Delta (\{a_j\}_{j = 1}^n)\), \(\Delta \) is defined in (2.1). Moreover, for any symmetric domain \(\Omega \) and any symmetric function f(B) of \(\{b_j\}_{j = 1}^n\)

$$\begin{aligned}&\int \limits _{U_n}\int \limits _{\Omega } \exp \{z{{\mathrm{tr}}}AU^*BU\}\Delta ^2(B)f(B)dU_n(U)dB \nonumber \\&\quad = \bigg (\prod \limits _{j = 1}^n j!\bigg ) \frac{z^{-(n^2 - n)/2}}{\Delta (A)}\int \limits _{\Omega } \exp \bigg \{z\sum \limits _{j = 1}^n a_jb_j\bigg \}\Delta (B)f(B) dB, \end{aligned}$$
(6.3)

where \(dB = \prod \nolimits _{j = 1}^{n} db_j\).

For the proof see, e.g., [16, Appendix 5].

Remark 2

Notice, that (6.3) is also valid if A has equal eigenvalues.

Indeed, if \(a_{j_1} = a_{j_2}\), \(j_1 \ne j_2\), the integrand in r.h.s. of (6.3) changes sign when \(b_{j_1}\) and \(b_{j_2}\) are swapped. Thus, the ratio of the integral and \(a_{j_1} - a_{j_2}\) is well defined.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, I. On the Correlation Functions of the Characteristic Polynomials of the Sparse Hermitian Random Matrices. J Stat Phys 163, 324–356 (2016). https://doi.org/10.1007/s10955-016-1486-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1486-z

Keywords

Navigation