Skip to main content
Log in

Kardar–Parisi–Zhang Equation and Large Deviations for Random Walks in Weak Random Environments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the transition probabilities for random walks in \(1+1\) dimensional space-time random environments (RWRE). For critically tuned weak disorder we prove a sharp large deviation result: after appropriate rescaling, the transition probabilities for the RWRE evaluated in the large deviation regime, converge to the solution to the stochastic heat equation (SHE) with multiplicative noise (the logarithm of which is the KPZ equation). We apply this to the exactly solvable Beta RWRE and additionally present a formal derivation of the convergence of certain moment formulas for that model to those for the SHE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\). Ann. Probab. 42, 1212–1256 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in \(1+1\) dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balázs, M., Rassoul-Agha, F., Seppäläinen, T.: The random average process and random walk in a space-time random environment in one dimension. Commun. Math. Phys. 266, 499–545 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Barraquand, G., Corwin, I.: Random-walk in beta-distributed random environment. Probab. Theory Relat. Fields (2016). doi:10.1007/s00440-016-0699-z

  5. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caravenna, F., Sun, R., Zygouras, N.: Polynomial chaos and scaling limits of disordered systems. J. Eur. Math. Soc. (to appear)

  7. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl. 1, 1130001 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Corwin, I.: Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class. In: Proceedings of the International Congress of Mathematicians. (2014)

  9. Rassoul-Agha, F., Seppäläinen, T., Yilmaz, A.: Quenched free energy and large deviations for random walks in random potentials. Commun. Pure Appl. Math. 66, 202–244 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Thiery, T., Le Doussal, P.: Exact solution for a random walk in a time-dependent 1D random environment: the point-to-point Beta polymer. (2016). arXiv:1605.07538

Download references

Acknowledgements

I.C. was partially supported by the NSF through DMS-1208998, the Clay Mathematics Institute through a Clay Research Fellowship, the Institute Henri Poincaré through the Poincaré Chair, and the Packard Foundation through a Packard Fellowship for Science and Engineering. Y.G. was partially supported by the NSF through DMS-1613301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Gu.

Appendix 1: Sharp Large Deviation for Symmetric Simple Random Walk

Appendix 1: Sharp Large Deviation for Symmetric Simple Random Walk

Recall that

$$\begin{aligned} \mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2)= \mathbf {P}^{0}\left( S_{\frac{t_\varepsilon }{\varepsilon ^2}+m_1}=v\frac{t_{\varepsilon }}{\varepsilon ^2}+\frac{x_\varepsilon }{\varepsilon }+m_2\right) , \end{aligned}$$

\(p_{\sigma ^2}(t,x)\) is the density of \(N(0,\sigma ^2t)\), and assume that \(m_1,m_2\in \mathbb {Z}\), \(|m_1|,|m_2|\leqslant 1\) and \(m_1-m_2\) is even.

Lemma 4.1

For fixed \(t>0,x\in \mathbb {R}\), we have

$$\begin{aligned} \frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2)\rightarrow \frac{2p_{1-v^2}(t,x)}{(1+v)^{\frac{m_1+m_2}{2}}(1-v)^{\frac{m_1-m_2}{2}}} \end{aligned}$$
(4.1)

as \(\varepsilon \rightarrow 0\), and there exists a constant \(C>0\) such that for all \(t>0,x\in \mathbb {R}\),

$$\begin{aligned}&\frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v){+}\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2) \leqslant C\left( \frac{1}{\varepsilon }\mathbf {1}\{t\leqslant 100\varepsilon ^2,|x|\leqslant C\varepsilon \}\right. \nonumber \\&\quad \left. +\mathbf {1}\{t>100\varepsilon ^2\}\frac{1}{\sqrt{t}}e^{-\frac{x^2}{Ct}}\right) . \end{aligned}$$
(4.2)

Proof

To simplify the notation, let

$$\begin{aligned} n=\frac{t_\varepsilon }{\varepsilon ^2}+m_1, \ \ m=v\frac{t_\varepsilon }{\varepsilon ^2}+\frac{x_\varepsilon }{\varepsilon }+m_2, \end{aligned}$$
(4.3)

so that \(\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2)=\mathbf {P}^{0}(S_n=m)\). We will utilize the notation \(\lesssim \) when the left-hand side is bounded by a constant (independent of \(\varepsilon \) and t and x) times the right-hand side for all \(\varepsilon \) sufficiently small. We first prove the estimate (4.2) that is uniform in \(t>0,x\in \mathbb {R}\), then prove the convergence in (4.1) for fixed \(t>0,x\in \mathbb {R}\).

Case 1 \(t\leqslant 100\varepsilon ^2\). It is clear that \(t_\varepsilon \leqslant 100\varepsilon ^2\), and by the fact that \(|m|\leqslant n\) (or else \(\mathbf {P}^{0}(S_n=m)=0\)), there exists \(C>0\) so that \(|x_\varepsilon |\leqslant C\varepsilon \). Thus, we have

$$\begin{aligned} \frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2)\lesssim \frac{1}{\varepsilon } \mathbf {1}\{|x_\varepsilon |\leqslant C\varepsilon \}. \end{aligned}$$

This proves the first bound on the right-hand side of (4.2).

Case 2 \(t>100\varepsilon ^2\). Recall that \(|m_1|,|m_2|\leqslant 1\), so \(n\geqslant 90\)—we will implicitly use the largeness of n in some of the bounds below. By (4.3),

$$\begin{aligned} \frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)=\frac{1}{2} n\log (1-v^2)+\frac{1}{2}m\log \frac{1+v}{1-v} -m_1\mathcal {I}(v)+(vm_1-m_2)\mathcal {I}'(v), \end{aligned}$$

which implies

$$\begin{aligned} e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\lesssim e^{\frac{1}{2} n\log (1-v^2)+\frac{1}{2}m\log \frac{1+v}{1-v}}. \end{aligned}$$

Using Stirling’s approximation,

$$\begin{aligned} \sqrt{2\pi } N^{N+\frac{1}{2}}e^{-N}\leqslant N!\leqslant eN^{N+\frac{1}{2}}e^{-N}, \end{aligned}$$

we derive the bound

$$\begin{aligned} \mathbf {P}^{0}(S_n=m)\lesssim \sqrt{\frac{n}{n^2-m^2}} e^{-\frac{n+m}{2}\log (1+\frac{m}{n})-\frac{n-m}{2}\log (1-\frac{m}{n})} \end{aligned}$$

when \(|m|<n\).

Now we consider three different subcases of case 2. Fix \(0<\tau \ll 1\), and let \(k=m/n\).

Case 2.i \(|k|=1\). We have \(P(S_n=m)=2^{-n}\), so

$$\begin{aligned} \frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2) \lesssim \frac{1}{\varepsilon }e^{\frac{1}{2} n\log (1-v^2)+\frac{1}{2}m\log \frac{1+v}{1-v}-n\log 2}. \end{aligned}$$

In both cases of \(m=n\) and \(m=-n\), using the fact that \(v\in (0,1)\), we have

$$\begin{aligned} \frac{1}{\varepsilon }e^{\frac{1}{2} n\log (1-v^2)+\frac{1}{2}m\log \frac{1+v}{1-v}-n\log 2}\leqslant \frac{1}{\varepsilon } e^{-\delta n} \end{aligned}$$

for some \(\delta >0\) depending on v. Furthermore,

$$\begin{aligned} \frac{1}{\varepsilon }e^{-\delta n}=\frac{1}{\sqrt{\varepsilon ^2 n}}\sqrt{n}e^{-\frac{\delta n}{2}}e^{-\frac{\delta n}{2}} \lesssim \frac{1}{\sqrt{t}}e^{-\frac{\delta n}{2}}, \end{aligned}$$

so it remains to show that \(x^2/t\lesssim n\). By the fact that \(|m|\leqslant n\), we have

$$\begin{aligned} -t_\varepsilon \lesssim \varepsilon x_\varepsilon \lesssim t_\varepsilon , \end{aligned}$$

which implies \(-t\lesssim \varepsilon x\lesssim t\). This implies that in this case, the second bound on the right-hand side of (4.2) holds.

Case 2.ii \(|k|<1\) and \(|k-v|\geqslant \tau \). We have

$$\begin{aligned} \frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2) \lesssim \frac{1}{\varepsilon } \sqrt{\frac{n}{n^2-m^2}}e^{-\frac{n}{2}F(k)}, \end{aligned}$$
(4.4)

where

$$\begin{aligned} F(k)=(1+k)\log \frac{1+k}{1+v}+(1-k)\log \frac{1-k}{1-v}, \ \ k \in (-1,1). \end{aligned}$$
(4.5)

It is straightforward to check that F(k) attains its minimum at v and \(F''(k)\) is bounded from below by some positive constant. Since \(|k-v|\geqslant \tau \), we have \(F(k)\geqslant \delta \tau ^2\) with \(\delta =\frac{1}{2}\min _{k\in (-1,1)} F''(k)\). In addition, since \(|m|<n\), we have \(-n+2\leqslant m\leqslant n-2\), so

$$\begin{aligned} \frac{1}{\varepsilon } \sqrt{\frac{n}{n^2-m^2}} \leqslant \frac{1}{\sqrt{\varepsilon ^2 n}}\frac{1}{\sqrt{1-\left( \frac{m}{n}\right) ^2}} \lesssim \frac{1}{\sqrt{t}}\sqrt{n}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} \frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\mathscr {P}_\varepsilon (t_\varepsilon ,x_\varepsilon ,m_1,m_2) \lesssim \frac{1}{\sqrt{t}} \sqrt{n}e^{-\frac{ n}{2}\delta \tau ^2}\lesssim \frac{1}{\sqrt{t}} e^{-\frac{n}{4}\delta \tau ^2}, \end{aligned}$$

and the same discussion as in case 2.i shows \(e^{-\frac{n}{4}\delta \tau ^2}\lesssim e^{-\frac{x^2}{Ct}}\) for some \(C>0\), matching the second bound on the right-hand side of (4.2).

Case 2.iii \(|k-v|<\tau \). We have

$$\begin{aligned} \frac{1}{\varepsilon } \sqrt{\frac{n}{n^2-m^2}}\lesssim \frac{1}{\sqrt{t}}. \end{aligned}$$

For the exponent, it is clear that \(F(k)\geqslant \delta (k-v)^2\) with the same \(\delta >0\) from case 2.ii, so

$$\begin{aligned} e^{-\frac{n}{2}F(k)}\leqslant e^{-\frac{n}{2}\delta (k-v)^2}. \end{aligned}$$

Since \(k=m/n\) with mn given in (4.3), we have

$$\begin{aligned} n(k-v)^2=\frac{(x_\varepsilon +(m_2-vm_1)\varepsilon )^2}{t_\varepsilon +m_1\varepsilon ^2}, \end{aligned}$$
(4.6)

so

$$\begin{aligned} e^{-\frac{n}{2}\delta (k-v)^2}\lesssim e^{-\frac{(|x|-\tilde{C}\varepsilon )^2}{Ct}}\leqslant e^{-\frac{x^2}{Ct}}e^{\frac{2\tilde{C}\varepsilon |x|}{Ct}} \end{aligned}$$

for some \(C,\tilde{C}>0\). For \(M>0\), if \(|x|\leqslant M\varepsilon \), we have the desired estimate; if \(|x|>M\varepsilon \), we have

$$\begin{aligned} e^{-\frac{x^2}{Ct}}e^{\frac{2\tilde{C}\varepsilon |x|}{Ct}}< e^{-\frac{x^2}{Ct}}e^{\frac{2\tilde{C}x^2}{MCt}}, \end{aligned}$$

so we only need to choose M sufficiently large to complete the proof of (4.2).

To prove (4.1), we note that for fixed \(t>0,x\in \mathbb {R}\) and sufficiently small \(\varepsilon \), \(|k-v|\ll 1\) (we are in the region of case 2.iii). We use Stirling’s approximation and the fact that \(n,\frac{n+m}{2},\frac{n-m}{2}\rightarrow \infty \) to obtain that

$$\begin{aligned} \frac{\mathbf {P}^{0}(S_n=m)}{\sqrt{\frac{2n}{\pi (n^2-m^2)}}e^{-\frac{n}{2}[(1+k)\log (1+k)+(1-k)\log (1-k)]}}\rightarrow 1 \end{aligned}$$

as \(\varepsilon \rightarrow 0\). Thus we only need to analyze

$$\begin{aligned}&\frac{1}{\varepsilon }e^{\frac{t_\varepsilon }{\varepsilon ^2}\mathcal {I}(v)+\frac{x_\varepsilon }{\varepsilon }\mathcal {I}'(v)}\sqrt{\frac{2n}{\pi (n^2-m^2)}}e^{-\frac{n}{2}[(1+k)\log (1+k)+(1-k)\log (1-k)]}\\&=\sqrt{\frac{2n}{\pi (n^2-m^2)\varepsilon ^2}} \frac{e^{-\frac{n}{2}F(k)}}{(1+v)^{\frac{m_1+m_2}{2}}(1-v)^{\frac{m_1-m_2}{2}}}, \end{aligned}$$

with F(k) defined in (4.5). First, we have

$$\begin{aligned} \sqrt{\frac{2n}{\pi (n^2-m^2)\varepsilon ^2}}\rightarrow \sqrt{\frac{2}{\pi (1-v^2)t}}. \end{aligned}$$

Secondly, by (4.6), we have \(|k-v|\lesssim \varepsilon \) for fixed \(t>0,x\in \mathbb {R}\) and \(n(k-v)^2\rightarrow \frac{x^2}{t}\) as \(\varepsilon \rightarrow 0\). We expand \(F(k)=\frac{1}{2}F''(v)(k-v)^2+O(|k-v|^3)\) and conclude that

$$\begin{aligned} \frac{n}{2}F(k)\rightarrow F''(v)\frac{x^2}{4t}=\frac{x^2}{2(1-v^2)t} \end{aligned}$$

as \(\varepsilon \rightarrow 0\). This completes the proof of (4.1). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corwin, I., Gu, Y. Kardar–Parisi–Zhang Equation and Large Deviations for Random Walks in Weak Random Environments. J Stat Phys 166, 150–168 (2017). https://doi.org/10.1007/s10955-016-1693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1693-7

Keywords

Navigation