Skip to main content
Log in

The Random Average Process and Random Walk in a Space-Time Random Environment in One Dimension

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study space-time fluctuations around a characteristic line for a one-dimensional interacting system known as the random average process. The state of this system is a real-valued function on the integers. New values of the function are created by averaging previous values with random weights. The fluctuations analyzed occur on the scale n 1/4, where n is the ratio of macroscopic and microscopic scales in the system. The limits of the fluctuations are described by a family of Gaussian processes. In cases of known product-form invariant distributions, this limit is a two-parameter process whose time marginals are fractional Brownian motions with Hurst parameter 1/4. Along the way we study the limits of quenched mean processes for a random walk in a space-time random environment. These limits also happen at scale n 1/4 and are described by certain Gaussian processes that we identify. In particular, when we look at a backward quenched mean process, the limit process is the solution of a stochastic heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous D., Diaconis P. (1995) Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Related Fields 103(2): 199–213

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldous D., Diaconis P. (1999) Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. (N.S.) 36(4): 413–432

    Article  MathSciNet  MATH  Google Scholar 

  3. Baik J., Deift P., Johansson K. (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12(4): 1119–1178

    Article  MathSciNet  MATH  Google Scholar 

  4. Balázs M. (2003) Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré Probab. Statist. 39(4): 639–685

    Article  MATH  Google Scholar 

  5. Bernabei M.S. (2001) Anomalous behaviour for the random corrections to the cumulants of random walks in fluctuating random media. Probab. Theory Related Fields 119(3): 410–432

    Article  MathSciNet  MATH  Google Scholar 

  6. Boldrighini C., Pellegrinotti A. T −1/4-noise for random walks in dynamic environment on \(\mathbb{Z}\). Mosc. Math. J. 1(3), 365–380 470–471 (2001)

    Google Scholar 

  7. Burkholder D.L. (1973) Distribution function inequalities for martingales. Ann. Probab. 1, 19–42

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, K.L. Markov chains with stationary transition probabilities. In: Die Grundlehren der mathematischen Wissenschaften, Band 104. New York: Springer-Verlag Second edition, 1967

  9. De Masi A., Presutti E. (1991) Mathematical methods for hydrodynamic limits, Volume 1501 of Lecture Notes in Mathematics. Springer-Verlag, Berlin

    MATH  Google Scholar 

  10. Deift P. (2000) Integrable systems and combinatorial theory. Notices Amer. Math. Soc. 47(6): 631–640

    MathSciNet  MATH  Google Scholar 

  11. Durrett R. (2004) Probability: theory and examples. Duxbury Advanced Series. Brooks/Cole–Thomson, Belmont, CA, Third edition

    Google Scholar 

  12. Ethier S.N., Kurtz T.G. (1986) Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York

    Google Scholar 

  13. Ferrari P.A., Fontes L.R.G. (1994) Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22(2): 820–832

    Article  MathSciNet  MATH  Google Scholar 

  14. Ferrari, P.A., Fontes, L.R.G. Fluctuations of a surface submitted to a random average process. Electron. J. Probab. 3, no. 6, 34 pp., (1998) (electronic)

  15. Ferrari, P.L., Spohn, H Scaling Limit for the Space-Time Covariance of the Stationary Totally Asymmetric Simple Exclusion Process. Commum. Math. Phys. (2006) (in press)

  16. Gravner J., Tracy C.A., Widom H. (2001) Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102(5–6): 1085–1132

    Article  MathSciNet  MATH  Google Scholar 

  17. Groeneboom P. (2002) Hydrodynamical methods for analyzing longest increasing subsequences. J. Comput. Appl. Math. 142(1): 83–105

    Article  MathSciNet  MATH  Google Scholar 

  18. Hammersley, J.M. A few seedlings of research. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, Berkeley, Univ. California Press, 1972, pp. 345–394

  19. Johansson K. (2000) Shape fluctuations and random matrices. Commun. Math. Phys. 209(2): 437–476

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Johansson, K. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2) 153(1), 259–296 (2001)

    Google Scholar 

  21. Kipnis C., Landim C. (1999) Scaling limits of interacting particle systems. Volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin

    MATH  Google Scholar 

  22. Liggett T.M. (1985) Interacting particle systems. Volume 276 of fcGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York

    MATH  Google Scholar 

  23. Liggett T.M. (1999) Stochastic interacting systems: contact, voter and exclusion processes. Volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles f Mathematical Sciences], Springer-Verlag, Berlin

    MATH  Google Scholar 

  24. Rassoul-Agha, F., Seppäläinen, T. An almost sure invariance principle for random walks in a space-time random environment. Probab. The. Rel. Fields 133, no. 3, 299–314 (2005)

    Google Scholar 

  25. Rezakhanlou F. (2002) A central limit theorem for the asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 38(4): 437–464

    Article  MathSciNet  MATH  Google Scholar 

  26. Seppäläinen, T. A microscopic model for the Burgers equation and longest increasing subsequences. Electron. J. Probab. 1, no. 5, approx. 51 pp., (1996) (electronic)

  27. Seppäläinen T. (1998) Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26(3): 1232–1250

    Article  MathSciNet  MATH  Google Scholar 

  28. Seppäläinen T. (1998) Large deviations for increasing sequences on the plane. Probab. Th. Rel. Fields 112(2): 221–244

    Article  MATH  Google Scholar 

  29. Seppäläinen T. (2002) Diffusive fluctuations for one-dimensional totally asymmetric interacting random dynamics. Commun. Math. Phys. 229(1): 141–182

    Article  ADS  MATH  Google Scholar 

  30. Seppäläinen T. (2005) Second-order fluctuations and current across characteristic for a one-dimensional growth model of independent random walks. Ann. Probab. 33(2): 759–797

    Article  MathSciNet  MATH  Google Scholar 

  31. Spitzer F. (1976) Principles of random walk. Springer-Verlag, New York

    MATH  Google Scholar 

  32. Spohn H. (1991) Large scale dynamics of interacting particles. Springer-Verlag, Berlin

    MATH  Google Scholar 

  33. Varadhan, S.R.S. Lectures on hydrodynamic scaling. In Hydrodynamic limits and related topics (Toronto, ON, 1998), Volume 27 of Fields Inst. Commun., Providence, RI: Amer. Math. Soc., 2000, pp. 3–40

  34. Walsh, J.B. An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV—1984, Volume 1180 of Lecture Notes in Math., Berlin: Springer, 1986, pp. 265–439

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Seppäläinen.

Additional information

Communicated by H. Spohn

M. Balázs was partially supported by Hungarian Scientific Research Fund (OTKA) grant T037685.

T. Seppäläinen was partially supported by National Science Foundation grant DMS-0402231.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balázs, M., Rassoul-Agha, F. & Seppäläinen, T. The Random Average Process and Random Walk in a Space-Time Random Environment in One Dimension. Commun. Math. Phys. 266, 499–545 (2006). https://doi.org/10.1007/s00220-006-0036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0036-y

Keywords

Navigation