Skip to main content
Log in

Scaling Limits and Critical Behaviour of the \(4\)-Dimensional \(n\)-Component \(|\varphi |^4\) Spin Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the \(n\)-component \(|\varphi |^4\) spin model on \({\mathbb {Z}}^4\), for all \(n \ge 1\), with small coupling constant. We prove that the susceptibility has a logarithmic correction to mean field scaling, with exponent \(\frac{n+2}{n+8}\) for the logarithm. We also analyse the asymptotic behaviour of the pressure as the critical point is approached, and prove that the specific heat has fractional logarithmic scaling for \(n =1,2,3\); double logarithmic scaling for \(n=4\); and is bounded when \(n>4\). In addition, for the model defined on the \(4\)-dimensional discrete torus, we prove that the scaling limit as the critical point is approached is a multiple of a Gaussian free field on the continuum torus, whereas, in the subcritical regime, the scaling limit is Gaussian white noise with intensity given by the susceptibility. The proofs are based on a rigorous renormalisation group method in the spirit of Wilson, developed in a companion series of papers to study the 4-dimensional weakly self-avoiding walk, and adapted here to the \(|\varphi |^4\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdesselam, A.: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Abdesselam, A., Chandra, A., Guadagni, G.: Rigorous quantum field theory functional integrals over the \(p\)-adics I: Anomalous dimensions. Preprint (2013). arXiv:1302.5971

  3. Adams, S., Kotecký, R., Müller, S.: Strict convexity of the surface tension for non-convex potentials, Preprint (2014)

  4. Aizenman, M.: Geometric analysis of \(\varphi ^4\) fields and Ising models, Parts I and II. Commun. Math. Phys. 86, 1–48 (1982)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)

    Article  MATH  ADS  Google Scholar 

  6. Aizenman, M., Fernández, R.: Critical exponents for long-range interactions. Lett. Math. Phys. 16, 39–49 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Aizenman, M., Graham, R.: On the renormalized coupling constant and the susceptibility in \(\phi _4^4\) field theory and the Ising model in four dimensions. Nucl. Phys. B225(FS9), 261–288 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Amit, D.J.: Field Theory, the Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, Singapore (1984)

    Google Scholar 

  9. Aragão de Carvalho, C., Caracciolo, S., Fröhlich, J.: Polymers and \(g|\phi |^4\) theory in four dimensions. Nucl. Phys. B 215(FS7), 209–248 (1983)

    Article  ADS  Google Scholar 

  10. Bałaban, T.: Ultraviolet stability in field theory. The \(\phi ^4_3\) model. In: Fröhlich, J. (ed.) Scaling and Self-Similarity in Physics. Birkhäuser, Boston (1983)

    Google Scholar 

  11. Bałaban, T., O’Carroll, M.: Low temperature properties for correlation functions in classical \(N\)-vector spin models. Commun. Math. Phys. 199, 493–520 (1999)

    Article  MATH  ADS  Google Scholar 

  12. Bauerschmidt, R.: A simple method for finite range decomposition of quadratic forms and Gaussian fields. Probab. Theory Relat. Fields 157, 817–845 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Preprint (2014). arXiv:1403.7268

  14. Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Preprint (2014). arXiv:1403.7422

  15. Bauerschmidt, R., Brydges, D.C., Slade, G.. Ptsoft: python program for perturbative renormalisation group calculation, Version 1.0 [Software]. Available at http://www.math.ubc.ca/~slade/ (2014)

  16. Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis, Preprint (2014). arXiv:1403.7252

  17. Bauerschmidt, R., Brydges, D.C., Slade, G.: Structural stability of a dynamical system near a non-hyperbolic fixed point. To appear in Annales Henri Poincaré. doi:10.1007/s00023-014-0338-0

  18. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  19. Benfatto, G., Cassandro, M., Gallavotti, G., Nicolò, F., Oliveri, E., Presutti, E., Scacciatelli, E.: Some probabilistic techniques in field theory. Commun. Math. Phys. 59, 143–166 (1978)

    Article  MATH  ADS  Google Scholar 

  20. Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  21. Brézin, E., Le Guillou, J.C., Zinn-Justin, J.: Approach to scaling in renormalized perturbation theory. Phys. Rev. D 8, 2418–2430 (1973)

    Article  ADS  Google Scholar 

  22. Brydges, D.C.: Lectures on the renormalisation group. In: Sheffield, S., Spencer, T. (eds.) Statistical Mechanics, pp. 7–93. American Mathematical Society, Providence (2009). IAS/Park City Mathematics Series, Volume 16

  23. Brydges, D.C., Guadagni, G., Mitter, P.K.: Finite range decomposition of Gaussian processes. J. Stat. Phys. 115, 415–449 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Brydges, D.C., Mitter, P.K., Scoppola, B.: Critical \(({\Phi }^4)_{3,\epsilon }\). Commun. Math. Phys. 240, 281–327 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras, Preprint (2014).

  26. Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials, Preprint (2014). arXiv:1403.7244

  27. Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis, Preprint (2014). arXiv:1403.7253

  28. Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step, Preprint (2014). arXiv:1403.7255

  29. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1996). arXiv:1403.7256

  30. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189, 515–580 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Dimock, J.: The renormalization group according to Bałaban I. Small fields. Rev. Math. Phys. 25, 1330010 (2013)

    Article  MathSciNet  Google Scholar 

  32. Domb, C: The Critical Point. A historical introduction to the modern theory of critical phenomena. Taylor and Francis, London (1996)

  33. Falco, P.: Kosterlitz-Thouless transition line for the two dimensional Coulomb gas. Commun. Math. Phys. 312, 559–609 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. Falco, P: Critical exponents of the two dimensional Coulomb gas at the Berezinskii–Kosterlitz–Thouless transition. Preprint (2013)

  35. Feldman, J., Knörrer, H., Trubowitz, E.: Fermionic Functional Integrals and the Renormalization Group. CRM Monograph Series, vol. 16. American Mathematical Society, Providence (2002)

  36. Feldman, J., Knörrer, H., Trubowitz, E.: A two dimensional Fermi liquid. Part 1: overview. Commun. Math. Phys. 247, 1–47 (2004)

    Article  MATH  ADS  Google Scholar 

  37. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: Construction and Borel summability of infrared \(\Phi ^4_4\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)

    Article  ADS  Google Scholar 

  38. Fernández, R., Fröhlich, J., Sokal, A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  39. Fisher, M.E., Ma, S., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972)

    Article  ADS  Google Scholar 

  40. Fröhlich, J.: On the triviality of \(\varphi _d^4\) theories and the approach to the critical point in \(d \ge 4\) dimensions. Nucl. Phys. B200(FS4), 281–296 (1982)

    Article  ADS  Google Scholar 

  41. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  ADS  Google Scholar 

  42. Gawȩdzki, K., Kupiainen, A.: A rigorous block spin approach to massless lattice theories. Commun. Math. Phys. 77, 31–64 (1980)

    Article  ADS  Google Scholar 

  43. Gawȩdzki, K., Kupiainen, A.: Massless lattice \(\varphi ^4_4\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 199–252 (1985)

    Google Scholar 

  44. Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.), Critical Phenomena, Random Systems, Gauge Theories, Amsterdam, (1986). North-Holland. Les Houches (1984)

  45. de Gennes, P.G.: Exponents for the excluded volume problem as derived by the Wilson method. Phys. Lett. A38, 339–340 (1972)

    Article  ADS  Google Scholar 

  46. Giuliani, A., Mastropietro, V., Porta, M.: Universality of conductivity in interacting graphene. Commun. Math. Phys. 311, 317–355 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, Berlin (1987)

    Google Scholar 

  48. Hara, T.: A rigorous control of logarithmic corrections in four dimensional \(\varphi ^4\) spin systems. I. Trajectory of effective Hamiltonians. J. Stat. Phys. 47, 57–98 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  49. Hara, T., Tasaki, H.: A rigorous control of logarithmic corrections in four dimensional \(\varphi ^4\) spin systems. II. Critical behaviour of susceptibility and correlation length. J. Stat. Phys. 47, 99–121 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  50. Heydenreich, M.: Long-range self-avoiding walk converges to alpha-stable processes. Ann. I. Henri Poincaré Probab. Stat. 47, 20–42 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Heydenreich, M., van der Hofstad, R., Sakai, A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Kadanoff, L.P.: Scaling laws for Ising models near \({T}_c\). Physics 2, 263–272 (1966)

    Google Scholar 

  53. Larkin, A.I., Khmel’Nitskiĭ, D.E.: Phase transition in uniaxial ferroelectrics. Soviet Physics JETP, 29:1123–1128, (1969). English translation of Zh. Eksp. Teor. Fiz. 56, 2087–2098 (1969)

  54. Lebowitz, J.L., Presutti, E.: Statistical mechanics of systems of unbounded spins. Commun. Math. Phys. 50, 195–218 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  55. Lundow, P.H., Markström, K.: Critical behavior of the Ising model on the four-dimensional cubic lattice. Phys. Rev. E 80, 031104 (2009)

    Article  ADS  Google Scholar 

  56. Mastropietro, V.: Non-Perturbative Renormalization. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  57. Mitter, P.K., Scoppola, B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({\mathbf{Z}}^3\). J. Stat. Phys. 133, 921–1011 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys. 74, 119–128 (1980)

    Article  MATH  ADS  Google Scholar 

  59. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)

    Google Scholar 

  60. Sakai, A.: Application of the lace expansion to the \(\varphi ^4\) model. Preprint (2014)

  61. Sakai, A.: Lace expansion for the Ising model. Commun. Math. Phys. 272, 283–344 (2007)

    Article  MATH  ADS  Google Scholar 

  62. Salmhofer, M.: Renormalization: An Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  63. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Simon, B.: Functional Integration and Quantum Physics. Academic Press, New York (1979)

    MATH  Google Scholar 

  65. Simon, B., Griffiths, R.B.: The \((\phi ^4)_2\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  66. Slade, G.: The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in Mathematics, vol. 1879. Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004

  67. Slade, G., Tomberg, A.: In preparation

  68. Sokal, A.D.: A rigorous inequality for the specific heat of an Ising or \(\varphi ^4\) ferromagnet. Phys. Lett. 71A, 451–453 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  69. Wegner, F.J., Riedel, E.K.: Logarithmic corrections to the molecular-field behavior of critical and tricritical systems. Phys. Rev. B 7, 248–256 (1973)

    Article  ADS  Google Scholar 

  70. Wilson, K.G.: Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 4, 3184–3205 (1971)

    Article  MATH  ADS  Google Scholar 

  71. Wilson, K.G.: Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B 4, 3174–3183 (1971)

    Article  MATH  ADS  Google Scholar 

  72. Wilson, K.G.: The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773–840 (1975)

    Article  ADS  Google Scholar 

  73. Wilson, K.G.: Renormalization group methods. Adv. Math. 16, 170–186 (1975)

    Article  Google Scholar 

  74. Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240–243 (1972)

    Article  ADS  Google Scholar 

  75. Wilson, K.G., Kogut, J.: The renormalization group and the \(\epsilon \) expansion. Phys. Rep. 12, 75–200 (1974)

    Article  ADS  Google Scholar 

  76. Zinn-Justin, J.: Phase Transitions and Renormalization Group. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSERC of Canada. This material is also based upon work supported by the National Science Foundation under agreement No. DMS-1128155. We thank Alexandre Tomberg for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Brydges.

Additional information

This article is dedicated to the memory of Kenneth G. Wilson.

Appendix: Bounds on Renormalisation Group Map

Appendix: Bounds on Renormalisation Group Map

We now prove Lemma 4.1, the second bound of (4.49), and Lemma 4.3. These are restated here as Lemmas 5.4, 5.5, and 5.6, respectively. (Lemma 5.5 does more, in preparation for the proof of Lemma 5.6.) This involves a detailed analysis of the sequence \(u_j\), as well as estimates on second derivatives of the renormalisation group flow with respect to the initial condition \(\nu _0\).

From (3.60), we recall that the sequence \(u_j\) is defined by

$$\begin{aligned} u_j = \sum _{i=0}^{j-1} \delta u_{i+1}. \end{aligned}$$
(5.1)

The coupling constants \(\delta u_{j+1}\) are given by

$$\begin{aligned} \delta u_{j+1} = \delta u_{{\mathrm{pt}}}(V_j) + R^{\delta u}_{j+1}(V_j,K_j), \end{aligned}$$
(5.2)

with \((V_j,K_j)\) the renormalisation group flow of Theorem 3.6, \(\delta u_{\mathrm{pt}}\) defined in (3.27), and \(R^{\delta u}_+\) the \(\delta u\) component of (3.52).

1.1 The Coupling Constant \(u\): Proof of Lemma 4.1

We begin with the following lemma concerning \(\delta u_{\mathrm{pt}}\) of (3.27).

Lemma 5.1

The coefficients in (3.27) are continuous in \(m^2 \in [0,\delta )\) and are uniformly bounded by \(O(L^{-dj}{\vartheta }_j)\).

Proof

Except for the coefficient of \(g^2\), the claim follows from (3.29)–(3.31) and the facts that \(C_{0,0} = O(L^{-2j})\), \(\Delta C_{0,0} = O(L^{-4j})\) by (2.11) (the \(\delta [(\Delta w)^{(2)}]\) term can be handled similarly to \(\zeta \)).

We fix any \(k>0\) and set \(M_j = (1+m^2L^{2j})^{-k}\). With a \(k\)-dependent constant, \(M_j=O({\vartheta }_j)\). The remaining bound to be established is

$$\begin{aligned} \delta [w^{(4)}] - 4 C_{0,0}w^{(3)} + 2 \Delta C_{0,0} (w^3)^{(**)} - 6 C_{0,0}^2 w^{(2)} = O(M_jL^{-4j}). \end{aligned}$$
(5.3)

The left-hand side of (5.3) is equal to

$$\begin{aligned} 4 \sum _x w_x^3 (C_x-C_0-\frac{1}{2} x_1^2 \Delta C_0) + 6 \sum _x w_x^2 (C_x^2-C_0^2) + 4\sum _x w_x C_x^3 + \sum _x C_x^4. \end{aligned}$$
(5.4)

Since \(\nabla ^e\nabla ^{-e}C_0 = \nabla ^e\nabla ^{e} C_{0} + O(\Vert \nabla ^3 C\Vert _\infty )\), and by invariance under lattice rotations, \(x_1^2\Delta C_0\) can be replaced by \(\sum _{i,j=1}^d x_i x_j \nabla ^{e_i}\nabla ^{e_j}C_0 + O(\Vert \nabla ^3 C\Vert _\infty )\). By a discrete Taylor approximation (e.g., as in the proof of [26, Lemma 3.5]),

$$\begin{aligned} \sum _x w_x^3 (C_x-C_0-\frac{1}{2} x_1^2 \Delta C_0)&= \sum _x w_x^3 O(|x|^3 \Vert \nabla ^3 C\Vert _\infty ). \end{aligned}$$
(5.5)

Therefore, using (2.11) to estimate the \(C_n\) (e.g., \(\Vert \nabla ^3 C\Vert _\infty = M_jL^{-5j}\)), and since \(C_n\) is supported in a cube with \(O(L^{4n})\) points, we obtain

$$\begin{aligned} \sum _x w_x^3 (C_x-C_0-\frac{1}{2} x_1^2 \Delta C_0)&= O(M_jL^{-5j}) \sum _{j \ge i\ge l\ge m} \sum _{x} C_{i;x}C_{l;x}C_{m;x} |x|^3\nonumber \\&= O(M_jL^{-5j}) \sum _{j \ge i \ge l} L^{-2i} L^{-2l} L^{5l}\nonumber \\&= O(M_jL^{-5j}) \sum _{j \ge i} L^{i} = O(M_jL^{-4j}). \end{aligned}$$
(5.6)

Similarly,

$$\begin{aligned} \sum _x w_x^2 (C_x^2-C_0^2) = O(M_j L^{-6j}) \sum _x w_x^2 |x|^2 = O(M_jL^{-6j}) \sum _{k\le j} L^{2k} = O(M_jL^{-4j}). \end{aligned}$$
(5.7)

The last two terms in (5.4) are \(O(M_jL^{2j} L^{-6j}) = O(M_jL^{-4j})\) and \(O(M_jL^{4j}L^{-8j}) = O(M_jL^{-4j})\) as claimed. This completes the proof. \(\square \)

The proof of Lemma 4.1 uses the following definition and proposition from [14]. The proof of the proposition is given in [14, Proposition 8.3].

Definition 5.2

  1. (i)

    A map \((V,K,m^2) \mapsto F(V,K,m^2)\) acting on a subset of \(\mathcal {V}\times \mathcal {K}_j \times [0,\delta )\) with values in a Banach space \(E\) is a continuous function of the renormalisation group coordinates at scale-j, if its domain includes \(\mathbb {D}_j(\tilde{s}_j) \times \tilde{\mathbb {I}}_{j+1}(\tilde{m}^2)\) for all \(\tilde{s}_0 \in [0,\delta ) \times (0,\delta )\), and if its restriction to the domain \(\mathbb {D}_j(\tilde{s}_j) \times \tilde{\mathbb {I}}_{j+1}(\tilde{m}^2)\) is continuous as a map \(F: \mathbb {D}_j(\tilde{s}_j) \times \tilde{\mathbb {I}}_{j+1}(\tilde{m}^2) \rightarrow E\), for all \(\tilde{s}_0 \in [0,\delta ) \times (0,\delta )\). We also say that \(F\) is a \(C^0\) map of the renormalisation group coordinates.

  2. (ii)

    For \(k \in {\mathbb {N}}\), a map \(F\) is a \(C^k\) map of the renormalisation group coordinates at scale-j, if it is a \(C^0\) map of the renormalisation group coordinates, its restrictions to the domains \(\mathbb {D}_j(\tilde{s}_j) \times \tilde{\mathbb {I}}_{j+1}(\tilde{m}^2)\) are \(k\)-times continuously Fréchet differentiable in \((V,K)\), and every Fréchet derivative in \((V,K)\), when applied as a multilinear map to directions \(\dot{V}\in \mathcal {V}^{p}\) and \(\dot{K}\in \mathcal {W}^{q}\), is jointly continuous in all arguments, \(m^{2}, V,K, \dot{V}, \dot{K}\).

Proposition 5.3 Let \(j < N(\mathbb {V})\), \(k \in {\mathbb {N}}_0\), and let \(F\) be a \(C^k\) map of the renormalisation group coordinates at scale-\(j\). Then, for every \(p \le k\), all \(s_0 \in [0,\delta ) \times (0,\delta )\), the derivative \(D_{V_0}^p F(s_0)\) exists, and

$$\begin{aligned} s_0 \mapsto D_{V_0}^p F(s_0)\,\text {is a continuous map}\,\,[0,\delta ) \times (0,\delta ) \rightarrow L^p(\mathcal {V}, E), \end{aligned}$$
(5.8)

where \(L^p(\mathcal {V},E)\) is the space of \(p\)-linear maps from \(\mathcal {V}\) to \(E\) with the operator norm.

The following lemma is a restatement of Lemma 4.1.

Lemma 5.4

For \((m^2,g_0) \in [0,\delta )^2\), the limit \(u_\infty = \lim _{j\rightarrow \infty }u_j\) exists, is continuous in \((m^2,g_0) \in [0,\delta )^2\), and obeys

$$\begin{aligned} u_\infty&= \lim _{j\rightarrow \infty }u_j = u_j + O(L^{-4j}{\vartheta }_j\bar{g}_j). \end{aligned}$$
(5.9)

In particular, since \(u_0=0\), \(u_\infty = O(g_0)\).

Proof

The first term on the right-hand side of (5.2) is \(O(L^{-dj}{\vartheta }_j\bar{g}_j)\), by Lemma 5.1 and Theorem 3.6. The second term is \(O(L^{-dj}{\vartheta }_j\bar{g}_j^3)\), by Theorems 3.5–3.6. Thus \(\delta u_{j+1}= O(L^{-4j}{\vartheta }_j \bar{g}_j)\).

By Theorems 3.5–3.6, \(U_+=(\delta u_+,V_+)\) is a continuous function of the renormalisation group coordinates at scale \(j\). Thus, by Proposition 5.3, \((m^2,g_0) \mapsto \delta u_{j+1}\) is a continuous function on \([0,\delta ) \times (0,\delta )\). Since \(\delta u_{j+1} = O(L^{-4j}{\vartheta }_j \bar{g}_j) = O(g_0) \rightarrow 0\) as \(g_0\downarrow 0\), it follows that \(\delta u_{j+1}\) is continuous on \([0,\delta )^2\).

The existence of the limit \(u_\infty \) and (5.9) follow immediately from the estimate \(\delta u_{j+1}= O(L^{-4j}{\vartheta }_j \bar{g}_j)\). Since \(\delta u_{j+1} = O(L^{-4j})\), the sum (5.1) converges uniformly on \((m^2,g_0) \in [0,\delta )^2\) as \(j\rightarrow \infty \), so \(u_\infty \) is also continuous on \([0,\delta )^2\). This completes the proof. \(\square \)

1.2 Derivatives of Flow

For a function \(f = f(m^2,g_0,\nu _0,z_0)\), we recall the notation

$$\begin{aligned} f'&= \frac{\partial }{\partial \nu _0} f(m^2,g_0, \nu _0^c(m^2,g_0), z_0^c(m^2,g_0)),\end{aligned}$$
(5.10)
$$\begin{aligned} f''&= \frac{\partial ^2}{\partial \nu _0^2} f(m^2,g_0, \nu _0^c(m^2,g_0), z_0^c(m^2,g_0)), \end{aligned}$$
(5.11)

with \((z_0^c,\nu _0^c)\) as in Theorem 3.6. As in [14, Lemma 8.6],

$$\begin{aligned} \check{\mu }_j' = L^{2j}\left( \frac{\check{g}_j}{g_0}\right) ^{\gamma } (c(m^2, g_0) + O(\vartheta _j \check{g}_j)), \end{aligned}$$
(5.12)

where \(c(m^2,g_0) = 1+O(g_0)\), and

$$\begin{aligned} \check{g}_j', \check{z}_j' = O({\vartheta }_j \check{\mu }_j'\check{g}_j^2), \quad \Vert K_j'\Vert _{\mathcal {W}_j} = O({\vartheta }_j \check{\mu }_j'\check{g}_j^2). \end{aligned}$$
(5.13)

The following lemma gives similar bounds for second derivatives, via an extension of the proof of [14, Lemma 8.6].

Lemma 5.5

Let \((m^2,g_0)\in [0,\delta ) \times (0,\delta )\), let \((z_0,\nu _0)=(z_0^c,\mu _0^c)\). Then

$$\begin{aligned} \check{\mu }_j'', \check{g}_j'', \check{z}_j'' = O({\vartheta }_j(\check{\mu }_j')^2 \check{g}_j), \quad \Vert K_j''\Vert _{\mathcal {W}_j} = O({\vartheta }_j(\check{\mu }')^2\check{g}_j). \end{aligned}$$
(5.14)

Proof

The proof is by induction, with the induction hypothesis that there exist constants \(M_1,M_2 > 0\) such that

$$\begin{aligned} |\check{\mu }_j''|, |\check{g}_j''|, |\check{z}_j''| \le M_1 {\vartheta }_j(\check{\mu }_j')^2 \check{g}_j, \quad \Vert K_j''\Vert _{\mathcal {W}_j} \le M_2 {\vartheta }_j(\check{\mu }_j')^2 \check{g}_j. \end{aligned}$$
(5.15)

This case \(j=0\) is trivial since the left-hand sides are \(0\). The advancement of the induction uses the fact that, by (5.12),

$$\begin{aligned} \frac{\check{g}_{j}}{\check{g}_{j+1}} = 1+O(\check{g}_j), \quad \frac{\check{\mu }_j'}{\check{\mu }_{j+1}'} = L^{-2}(1+O(\check{g}_j)). \end{aligned}$$
(5.16)

Also, assuming \(\Omega \le L\), we have \({\vartheta }_j/{\vartheta }_{j+1} \le L\). Assuming also that \(L \ge 4\), we therefore have

$$\begin{aligned} {\vartheta }_j \check{g}_j (\check{\mu }'_j)^2 \le \frac{2L}{L^4} {\vartheta }_{j+1} (\check{\mu }_{j+1}')^2 \check{g}_{j+1}&\le \frac{1}{2L^2}{\vartheta }_{j+1} \check{g}_{j+1} (\check{\mu }_{j+1}')^2 \le \frac{1}{2} {\vartheta }_{j+1} (\check{\mu }_{j+1}')^2 \check{g}_{j+1} . \end{aligned}$$
(5.17)

As in (3.66), (3.67), we write the recursion relation for \((\check{V}_j,K_j)\) as

$$\begin{aligned} \check{V}_{j+1} = \bar{\phi }_j(\check{V}_j) + \check{R}_{j+1}^{(0)}(\check{V}_j,K_j), \quad K_{j+1}=\check{K}_{j+1}(V_j,K_j). \end{aligned}$$
(5.18)

With \(F\) equal to either \(\check{R}_{j+1}^{(0)}\) or \(\check{K}_{j+1}\), the chain rule gives

$$\begin{aligned} F''(\check{V}_j,K_j)&= D_{\check{V}}F(\check{V}_j,K_j)\check{V}_j'' + D_KF(\check{V}_j,K_j)K_j'' + D_{\check{V}}^2F(\check{V}_j,K_j)\check{V}_j'\check{V}_j'\nonumber \\&\quad + D_K^2F(\check{V}_j,K_j)K_j'K_j' + 2D_{\check{V}}D_KF(\check{V}_j,K_j)\check{V}_j'K_j \end{aligned}$$
(5.19)

(here \(D_{\check{V}}D_KF(\check{V},K)AB\) denotes the second derivative of \(F\) with derivative in the variable \(\check{V}\) taken in direction \(A\) and derivative in \(K\) taken in direction \(B\)). We use \(\Vert \cdot \Vert \) to denote either the norm \(\Vert \cdot \Vert _{\mathcal {V}}\) on \(\mathcal {V}\cong {\mathbb {R}}^3\) or the norm \(\Vert \cdot \Vert _{\mathcal {W}_j}\). By the versions of (3.55) and (3.56) for \(\check{R}_+,\check{K}_+\) discussed below (3.65), and by (5.15),

$$\begin{aligned} \Vert D_VF(\check{V}_j,K_j)\check{V}_j''\Vert&\le O({\vartheta }_j \check{g}_j^2)M_1(\check{\mu }_j')^2\check{g}_j\end{aligned}$$
(5.20)
$$\begin{aligned} \Vert D_V^2F(\check{V}_j,K_j)\check{V}_j'\check{V}_j'\Vert&\le O({\vartheta }_j \check{g}_j) (\check{\mu }_j')^2 \end{aligned}$$
(5.21)
$$\begin{aligned} \Vert D_VD_KF(\check{V}_j,K_j)\check{V}_j'K_j'\Vert&\le O(\check{g}_j^{-1}) \check{\mu }_j' ({\vartheta }_j \check{\mu }_j' \check{g}_j^2 )\end{aligned}$$
(5.22)
$$\begin{aligned} \Vert D_K^2F(\check{V}_j,K_j)K_j'K_j'\Vert&\le O({\vartheta }_j^{-1} \check{g}_j^{-10/4}) ({\vartheta }_j \check{\mu }_j' \check{g}_j^2 )^2 \le O({\vartheta }_j (\check{\mu }_j')^2 \check{g}_j^{3/2} )\end{aligned}$$
(5.23)
$$\begin{aligned} \Vert D_K\check{R}_{j+1}^{(0)}(\check{V}_j,K_j)K_j''\Vert&\le O(M_2){\vartheta }_j(\check{\mu }_j')^2 \check{g}_j\end{aligned}$$
(5.24)
$$\begin{aligned} \Vert D_K\check{K}_{j+1}(\check{V}_j,K_j)K_j''\Vert&\le M_2{\vartheta }_j (\check{\mu }_j')^2 \check{g}_j . \end{aligned}$$
(5.25)

This implies, for \(M_2 \gg 1\),

$$\begin{aligned} \Vert (\check{R}_{j+1}^{(0)})''(\check{V}_j,K_j)\Vert \le O(M_2) {\vartheta }_j (\check{\mu }_j')^2 \check{g}_j, \quad \Vert \check{K}_{j+1}''(\check{V}_j,K_j)\Vert \le 2M_2 {\vartheta }_j (\check{\mu }_j')^2 \check{g}_j. \end{aligned}$$
(5.26)

The second bound and (5.17) immediately advance the induction for \(K_j''\). For \(\check{g}_{j+1}''\), we use (5.18). The second derivative of the first term of (5.18) can be bounded using the recursion (3.43) for \(\bar{g}\), Proposition 3.2 to estimate the coefficients, and (5.13) and the induction hypothesis (5.15) to estimate the first and second derivatives. With (5.26), this gives

$$\begin{aligned} |\check{g}_{j+1}''|&\le ((1+O(g_j))M_1+O(M_2)){\vartheta }_j (\check{\mu }_j')^2 \check{g}_j . \end{aligned}$$
(5.27)

Therefore,

$$\begin{aligned} |\check{g}_{j+1}''|&\le \frac{1}{2}(M_1+O(M_2)) {\vartheta }_{j+1} (\check{\mu }_{j+1}')^2 \check{g}_{j+1} \le M_1 {\vartheta }_{j+1} (\check{\mu }_{j+1}')^2 \check{g}_{j+1}, \end{aligned}$$
(5.28)

by (5.17) for the second inequality, and using \(M_1 \gg M_2\) in the last inequality. The estimates for \(\check{z}_j'', \check{\mu }_j''\) are analogous, with the difference that for \(\check{\mu }_j''\) there is an additional factor \(L^{2}\) (which is bounded analogously, using the second rather than the third inequality in (5.17)). This completes the proof. \(\square \)

1.3 Derivatives of \(u\): Proof of Lemma 4.3

The following lemma is a restatement of Lemma 4.3.

Lemma 5.6

Let \((m^2,g_0)\in (0,\delta )^2\), and let \((z_0,\nu _0)=(z_0^c,\nu _0^c)\). There exist \(u_\infty '\) continuous in \((m^2,g_0) \in [0,\delta )^2\) and \(u_\infty ''\) continuous in \((m^2,g_0) \in (0,\delta )^2\) such that

$$\begin{aligned} u'_\infty&= \lim _{N\rightarrow \infty } u_N' = \frac{n}{2 } \sum _{j=1}^\infty \check{\nu }_j' C_{j;0,0} + O(g),\end{aligned}$$
(5.29)
$$\begin{aligned} u''_\infty&= \lim _{N\rightarrow \infty } u_N'' = -\frac{n}{2(8+n)} \sum _{j=0}^\infty \beta _j (\check{\nu }_j')^2 + O(1). \end{aligned}$$
(5.30)

The convergence \(u_N'\rightarrow u_\infty '\) is uniform in \((m^2,g_0) \in [0,\delta )^2\), and the convergence \(u_N'' \rightarrow u_\infty ''\) is uniform on compact subsets of \((m^2,g_0) \in (0,\delta )^2\).

In the proof of Lemma 5.6, we use the transformed variables \((\check{V},K) = (T(V),K)\). As in (3.65), the corresponding version of (5.2) is

$$\begin{aligned} \delta u_{j+1} = \bar{\phi }^{\delta u}_{j}(\check{V}_j) + \check{R}^{\delta u}_{j+1}(\check{V}_j,K_j), \end{aligned}$$
(5.31)

where the map \(\bar{\phi }^{\delta u}\) is given by (3.46), and where \(\check{R}^{\delta u}_+\) is the transformed version of \(R^{\delta u}_+\), defined by \(\check{R}^{\delta u}_+(\check{V},K) = \delta u_+(T^{-1}(\check{V}),K) - \bar{\phi }^{\delta u}(\check{V})\). As noted around (3.65), the estimates stated for \(R_+\) in Theorem 3.5 hold mutatis mutandis for \(\check{R}_+\). In particular,

$$\begin{aligned} \Vert D_V^p D_K^q \check{R}_+^{\delta u}\Vert _{L^{p,q}} \le {\left\{ \begin{array}{ll} O(\tilde{\vartheta }\tilde{g}^{3-p}) &{} (p\ge 0,\, q=0)\\ O(\tilde{g}^{1-p-q}) &{} (p\ge 0,\, q = 1,2). \end{array}\right. } \end{aligned}$$
(5.32)

We recall that the norm (2.32) appearing on the left-hand side of (5.32) scales the \(\delta u\) component by a factor \(L^{4j}\). Thus, when estimating absolute values of derivatives of \(\check{R}^{\delta u}\), we obtain an additional factor \(O(L^{-4j})\).

Proof

We first note that, by Lemma 5.1, Theorems 3.5–3.6, and (5.2), \(\delta u_+\) is a \(C^2\) function of the renormalisation group coordinates at scale-\(j\). By Proposition 5.3, each of \(\delta u_+,\delta u_+', \delta u_+''\) is therefore continuous on \([0,\delta ) \times (0,\delta )\) (in particular, the derivatives exist).

We now prove the convergence and bounds for \(u_j'\). By (3.46) and Lemma 5.1, and by (5.12)–(5.13),

$$\begin{aligned} (\bar{\phi }^{\delta u}_{j+1})' = O(L^{-4j} {\vartheta }_j \check{\mu }_j'). \end{aligned}$$
(5.33)

Similarly, by (5.12)–(5.13), (5.32), and the chain rule,

$$\begin{aligned} (\check{R}_{j+1}^{\delta u})'= O(L^{-4j} {\vartheta }_j \check{\mu }_j' \check{g}_j^2). \end{aligned}$$
(5.34)

The latter bound is obtained when the derivative acts in the \(\mu _j\) or \(K_j\) direction, with the derivatives in the \(g_j,z_j\) directions smaller by a factor \(O(\check{g}_j^2)\). By (4.27), it follows in particular that \(\delta u_{j+1}' = O(L^{-4j}\check{\mu }_j') = O(L^{-2j})\). Thus \(\delta u_{j+1}'\) is summable, uniformly in \((m^2,g_0)\in [0,\delta )^2\). Since \(\delta u_{j+1}'\) is continuous in \((m^2,g_0) \in [0,\delta )^2\), as noted in the first paragraph of the proof, this implies that \(u'_\infty \) is also continuous on \([0,\delta )^2\), as claimed. By (5.12)–(5.13), and since the coefficients of \(\bar{\phi }^{\delta u}\) are uniformly bounded, the dominant contribution in (3.46) is given by \(n\check{\nu }_j' C_{j;0,0}\), and its sum over \(j\) yields the main term of (5.29). The other terms in (3.46) as well as \((R_{j+1}^{\delta u})'\) are bounded by \(O({\vartheta }_j L^{-4j} \check{g}_j \check{\mu }_j') = O(L^{-2j}\check{g}_j)\), whose sum is \(O(g)\) as claimed.

We now consider \(u_N''\). By (5.12)–(5.14), the dominant contribution in (3.46) for \((\bar{\phi }^{\delta u})''\) is given by the term proportional to

$$\begin{aligned} (\check{\nu }_j^2)'' = 2(\check{\nu }_j')^2 + 2 \check{\nu }_j''\check{\nu }_j = 2(\check{\nu }')^2 (1+O({\vartheta }_j\check{g}_j^2)), \end{aligned}$$
(5.35)

with the other terms bounded by \(O(L^{-4j} {\vartheta }_j (\check{\mu }_j')^2 \check{g}_j^2)\). To see the latter, observe that differentiating every monomial in (3.46) gives either one factor from \(\check{g}_j,\check{z}_j,\check{\mu }_j\) multiplied with one of \(\check{g}_j'',\check{z}_j'',\check{\mu }_j''\), which is \(O(L^{-4j} {\vartheta }_j (\check{\mu }_j')^2 \check{g}_j^2)\), or two factors of \(\check{g}_j',\check{z}_j',\check{\mu }_j'\) of which the largest is \((\check{\mu }')^2\), i.e., (5.35), with all other combinations bounded by \(O(L^{-4j} {\vartheta }_j (\check{\mu }_j')^2 \check{g}_j^2)\). From (5.12)–(5.14) and (5.32), it similarly follows that

$$\begin{aligned} (\check{R}^{\delta u}_{j+1})'' = O(L^{-4j} {\vartheta }_j (\check{\mu }_j')^2 \check{g}_j^2), \end{aligned}$$
(5.36)

which is obtained when both derivatives act in the \(\check{\mu }_j\) direction, or if one acts in \(\check{\mu }_j\) direction and one in the \(K_j\) direction. With (3.46)–(3.47) for the coefficient of the \(\check{\nu }^2\) term, since \(\delta _j[w^{(2)}] = \beta _j/(8+n)\), it follows that

$$\begin{aligned} u_N'' = - \frac{n}{2(8+n)} \sum _{j=0}^{N-1} \beta _j (\check{\nu }_j')^2 + \sum _{j=0}^{N-1} O({\vartheta }_j \check{g}_j (\check{\nu }_j')^2). \end{aligned}$$
(5.37)

The second term on right-hand side is bounded by

$$\begin{aligned} \sum _{j=0}^\infty \vartheta _j \check{g}_j (\check{\nu }_j')^2 = O(1) \sum _{j=0}^\infty \vartheta _j \frac{\bar{g}_j^{1+2\gamma }}{g_0^{2\gamma }} = O(1), \end{aligned}$$
(5.38)

by (4.55).

We finally show that \(u_N \rightarrow u_\infty \) uniformly in \(m^2 \in [\varepsilon , \delta )\), for any \(\varepsilon \in (0,\delta )\). It suffices to show that this holds for the restriction of both sums in (5.37) to \(j \ge j_{\varepsilon } = \lfloor \log _L \varepsilon \rfloor \). Then the summands are uniformly bounded by \(O({\vartheta }_j) = O(2^{-(j-j_{\varepsilon })})\), from which the claim is immediate. Thus \(u_N'' \rightarrow u_\infty ''\) compactly on \((m^2,g_0) \in (0,\delta )^2\), and since \(u_j''\) is continuous, it follows that \(u_\infty ''\) is also continuous on \((0,\delta )^2\), as claimed. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauerschmidt, R., Brydges, D.C. & Slade, G. Scaling Limits and Critical Behaviour of the \(4\)-Dimensional \(n\)-Component \(|\varphi |^4\) Spin Model. J Stat Phys 157, 692–742 (2014). https://doi.org/10.1007/s10955-014-1060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1060-5

Keywords

Mathematics Subject Classification

Navigation