Skip to main content
Log in

A Complete Renormalization Group Trajectory Between Two Fixed Points

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a rigorous nonperturbative construction of a massless discrete trajectory for Wilson’s exact renormalization group. The model is a three dimensional Euclidean field theory with a modified free propagator. The trajectory realizes the mean field to critical crossover from the ultraviolet Gaussian fixed point to an analog recently constructed by Brydges, Mitter and Scoppola of the Wilson-Fisher nontrivial fixed point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam A. (2006). Towards a complete renormalization group trajectory between two fixed points. Oberwolfach Rep. 3: 1061–1063

    Google Scholar 

  2. Abdesselam A., Rivasseau V. (1997). An explicit large versus small field multiscale cluster expansion. Rev. Math. Phys. 9: 123–199

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Second edition. New York: Academic Press, 2003

  4. Bach V., Møller J.S. (2003). Correlation at low temperature. I. Exponential decay. J. Funct. Anal. 203: 93–148

    Article  MATH  MathSciNet  Google Scholar 

  5. Battle, G.: Wavelets and renormalization. In: Series in Approximations and Decompositions, Vol. 10. River Edge, NJ: World Scientific Publishing Co., Inc., 1999

  6. Benfatto, G., Gallavotti, G.: Renormalization group. Physics Notes, Vol. 1, Princeton Paperbacks. Princeton, NJ: Princeton University Press, 1995

  7. Berger, M.S.: Nonlinearity and functional analysis. Lectures on nonlinear problems in mathematical analysis. Pure and Applied Mathematics, Vol. 74. New York-London: Academic Press [Harcourt Brace Jovanovich, Publishers], 1977

  8. Bleher P.M., Sinai Ja.G. (1973). Investigation of the critical point in models of the type of Dyson’s hierarchical models. Commun. Math. Phys. 33: 23–42

    Article  ADS  MathSciNet  Google Scholar 

  9. Bleher P.M., Sinai Ya.G. (1975). Critical indices for Dyson’s Asymptotically–hierarchical models. Commun. Math. Phys. 45: 247–278

    Article  ADS  MathSciNet  Google Scholar 

  10. Bogachev V.I.: Gaussian measures. Mathematical Surveys and Monographs, Vol. 62. Providence, RI: Am. Math. Soc., 1998

  11. Brydges D.C., Dimock J., Hurd T.R. (1998). Estimates on renormalization group transformations. Canadian J. Math. 50: 756–793

    MATH  MathSciNet  Google Scholar 

  12. Brydges D.C., Dimock J., Hurd T.R. (1998). A non-Gaussian fixed point for φ4 in 4 − ε dimensions. Commun. Math. Phys. 198: 111–156

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Brydges D.C., Guadagni G., Mitter P.K. (2004). Finite range decomposition of Gaussian processes. J. Stat. Phys. 115: 415–449

    Article  MathSciNet  Google Scholar 

  14. Brydges D.C., Keller G. (1994). Correlation functions of general observables in dipole-type systems. I. Accurate upper bounds. Helvetica Phys. Acta 67: 43–116

    MATH  MathSciNet  Google Scholar 

  15. Brydges D.C., Mitter P.K., Scoppola B. (2003). Critical \((\Phi^4)_{3,\epsilon}\). Commun. Math. Phys. 240: 281–327

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Brydges D.C., Talarczyk A. (2006). Finite range decompositions of positive-definite functions. J. Funct. Anal. 236: 682–711

    Article  MATH  MathSciNet  Google Scholar 

  17. Brydges D.C., Yau H.T. (1990). Grad φ perturbations of massless Gaussian fields. Commun. Math. Phys. 129: 351–392

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Carr, J.: Applications of centre manifold theory. Applied Mathematical Sciences, Vol. 35. New York-Berlin: Springer, 1981

  19. Chow, S.-N., Li, C.Z., Wang, D.: Normal forms and bifurcation of planar vector fields. Cambridge: Cambridge University Press, 1994

  20. Collet P., Eckmann J.-P. (1977). The ε-expansion for the hierarchical model. Commun. Math. Phys. 55: 67–96

    Article  ADS  MathSciNet  Google Scholar 

  21. Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics, Vol. 74. Berlin-New York: Springer, 1978

  22. de Calan C., Fariada Veiga P.A., Magnen J., Sénéor R. (1991). Constructing the three-dimensional Gross-Neveu model with a large number of flavor components. Phys. Rev. Lett. 66: 3233–3236

    Article  ADS  Google Scholar 

  23. Delfino G., Mussardo G., Simonetti P. (1995). Correlation functions along a massless flow. Phys. Rev. D 51: 6620–6624

    Article  ADS  Google Scholar 

  24. Deligne, P. et al., eds.: Quantum fields and strings: a course for mathematicians, Vol. 1, 2. Providence, RI: Amer. Math. Soc., Princeton NJ: Institute for Advanced Study, 1999

  25. Dieudonné, J.: Foundations of modern analysis. Pure and Applied Mathematics, Vol. 10. New York-London: Academic Press, 1960

  26. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. Graduate Texts in Contemporary Physics, New York: Springer, 1997

  27. Disertori M., Rivasseau V. (2000). Continuous constructive Fermionic renormalization. Ann. Henri Poincaré 1: 1–57

    Article  MATH  MathSciNet  Google Scholar 

  28. Dorey P., Dunning C., Tateo R. (2000). New families of flows between two-dimensional conformal field theories. Nucl. Phys. B 578: 699–727

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Dunning C. (2002). Massless flows between minimal W models. Phys. Lett. B 537: 297–305

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Faria da Veiga, P.A.: Construction de modèles non perturbativement renormalisables en théorie quantique des champs. Ph. D. thesis, Université Paris 11, 1991

  31. Felder G. (1987). Renormalization group in the local potential approximation. Commun. Math. Phys. 111: 101–121

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Feldman J., Magnen J., Rivasseau V., Sénéor R. (1986). A renormalizable field theory: the massive Gross-Neveu model in two dimensions. Commun. Math. Phys. 103: 67–103

    Article  MATH  ADS  Google Scholar 

  33. Feldman J., Magnen J., Rivasseau V., Sénéor R. (1987). Construction and Borel summability of infrared \((\phi)^4_4\) by a phase space expansion. Commun. Math. Phys. 109: 437–480

    Article  ADS  Google Scholar 

  34. Fröhlich, J. ed.: Scaling and self-similarity in physics. Renormalization in statistical mechanics and dynamics. Lectures presented at the seminar held at the Institut des Hautes Études Scientifiques, Bures-sur-Yvette, 1981/1982. Progress in Physics, Vol. 7. Boston, MA: Birkhäuser Boston, Inc., 1983

  35. Gallavotti G. (1985). Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods. Rev. Mod. Phys. 57: 471–562

    Article  ADS  MathSciNet  Google Scholar 

  36. Gaw̧dzki K., Kupiainen A. (1983). Non-Gaussian fixed points of the block spin transformation. Hierarchical model approximation. Commun. Math. Phys. 89: 191–220

    Article  ADS  Google Scholar 

  37. Gaw̧dzki K., Kupiainen A. (1984). Non-Gaussian scaling limits. Hierarchical model approximation. J. Stat. Phys. 35: 267–284

    Article  Google Scholar 

  38. Gaw̧dzki K., Kupiainen A. (1985). Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102: 1–30

    Article  ADS  Google Scholar 

  39. Gaw̧dski K., Kupiainen A. (1985). Renormalization of a nonrenormalizable quantum field theory. Nucl. Phys. B 262: 33–48

    Article  ADS  Google Scholar 

  40. Gel’fand, I.M., Shilov, G.E.: Generalized functions. Vol. I: Properties and operations. Translated by Eugene Saletan, New York-London: Academic Press, 1964

  41. Gell-Mann M., Low F.E. (1954). Quantum electrodynamics at small distances. Phys. Rev. (2) 95: 1300–1312

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Glimm J., Jaffe A. (1973). Positivity of the \(\phi^{4}_{3}\) Hamiltonian. Fortschr. Physik 21: 327–376

    Article  MathSciNet  Google Scholar 

  43. Glimm, J., Jaffe, A.: Quantum physics. A functional integral point of view. Second edition. New York: Springer, 1987

  44. Guidi L.F., Marchetti D.H.U. (2001). Renormalization group flow of the two-dimensional hierarchical Coulomb gas. Commun. Math. Phys. 219: 671–702

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. Helffer, B.: Semiclassical analysis, Witten Laplacians, and statistical mechanics. Series on Partial Differential Equations and Applications, Vol. 1. River Edge, NJ: World Scientific Publishing Co., Inc., 2002

  46. Hirsch, M.W., Pugh, C.C.: Stable manifolds and hyperbolic sets. In: Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Providence, RI: Am. Math. Soc., 1970, pp. 133–163

  47. Irwin M.C. (1970). On the stable manifold theorem. Bull. London Math. Soc. 2: 196–198

    Article  MATH  MathSciNet  Google Scholar 

  48. Kelley A. (1967). The stable, center-stable, center, center-unstable, unstable manifolds. J. Differ. Eqs. 3: 546–570

    Article  MATH  MathSciNet  Google Scholar 

  49. Koch, H., Wittwer, P.: The unstable manifold of a nontrivial RG fixed point. In: Mathematical quantum field theory and related topics (Montreal, PQ, 1987), CMS Conf. Proc., Vol, 9. Providence, RI: Amer. Math. Soc., 1988, pp. 99–105

  50. Kopell N., Howard L.N. (1975). Bifurcations and trajectories joining critical points. Adv. in Math. 18: 306–358

    Article  MATH  MathSciNet  Google Scholar 

  51. Kopper C. (1999). Mass generation in the large N-nonlinear σ-model. Commun. Math. Phys. 202: 89–126

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Kopper C., Magnen J., Rivasseau V. (1995). Mass generation in the large N Gross-Neveu-model. Commun. Math. Phys. 169: 121–180

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Kopper, C., Magnen, J., Rivasseau, V.: Personal communication, 1999

  54. Lima P.C. (1995). Renormalization group fixed points in the local potential approximation for d ≥  3. Commun. Math. Phys. 170: 529–539

    Article  MATH  ADS  MathSciNet  Google Scholar 

  55. Meurice, Y.: Nonlinear aspects of the renormalization group flows of Dyson’s hierarchical model. J. Phys. A 40, R39–R102 (2007)

    Google Scholar 

  56. Mitter, P.K.: The exact renormalization group. In: Encyclopedia of mathematical physics, J.P. Francoise et. al. eds., Vol. 2, Amsterdam: Elsevier, 2006, p. 272

  57. Mitter P.K. (2006). A non trivial fixed point in a three dimensional quantum field theory. Oberwolfach Rep. 3: 1047–1049

    Google Scholar 

  58. Mitter, P.K.: Personal communication, 2005

  59. Mitter P.K., Scoppola B. (2000). Renormalization group approach to interacting polymerised manifolds. Commun. Math. Phys. 209: 207–261

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. O’Connor, D., Stephens, C.R.: Renormalization group theory of crossovers. In: Renormalization group theory in the new millennium, IV (Taxco, 1999), Phys. Rep. 363, 425–545 (2002)

  61. Parisi G. (1975). The theory of non-renormalizable interactions, the large N expansion. Nucl. Phys. B 100: 368–388

    Article  ADS  Google Scholar 

  62. Pereira E.A. (1993). The critical surface for the tridimensional massless Gaussian fixed point: an unstable manifold with two relevant directions. J. Math. Phys. 34: 5770–5780

    Article  MATH  ADS  MathSciNet  Google Scholar 

  63. Redmond P.J., Uretsky J.L. (1958). Conjecture concerning the properties of nonrenormalizable field theories. Phys. Rev. Lett. 1: 147–148

    Article  ADS  Google Scholar 

  64. Rivasseau, V.: From perturbative to constructive renormalization. Princeton NJ: Princeton University Press, 1991

  65. Salmhofer M. (1998). Continuous renormalization for Fermions and Fermi liquid theory. Commun. Math. Phys. 194: 249–295

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. Salmhofer, M.: Renormalization. An introduction. Texts and Monographs in Physics, Berlin: Springer, 1999

  67. Shub, M.: Global stability of dynamical systems. With the collaboration of Albert Fathi and Rémi Langevin. Translated by Joseph Christy. New York: Springer, 1987

  68. Sijbrand J. (1985). Properties of center manifolds. Trans. Amer. Math. Soc. 289: 431–469

    Article  MATH  MathSciNet  Google Scholar 

  69. Sjöstrand, J.: Complete asymptotics for correlations of Laplace integrals in the semi-classical limit. Mém. Soc. Math. France (N.S.) 83, (2000)

  70. Skorohod, A.V.: Integration in Hilbert space. Translated from the Russian by Kenneth Wickwire. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79. New York-Heidelberg: Springer, 1974

  71. Sokal A.D. (1982). An alternate constructive approach to the φ4 3 quantum field theory and a possible destructive approach to φ4 4. Ann. Inst. Henri Poincaré Sect. A (N.S.) 37: 317–398

    MathSciNet  Google Scholar 

  72. Stueckelberg E.C.G., Petermann A. (1953). La normalisation des constantes dans la theorie des quanta. Helv. Phys. Acta 26: 499–520

    MATH  MathSciNet  Google Scholar 

  73. Symanzik K. (1975). Renormalization problem in nonrenormalizable massless Φ 4 theory. Commun. Math. Phys. 45: 79–98

    Article  ADS  MathSciNet  Google Scholar 

  74. Wieczerkowski C. (1998). Construction of the hierarchical Φ 4-trajectory. J. Stat. Phys. 92: 377–430

    Article  MATH  MathSciNet  Google Scholar 

  75. Wilson K.G., Fisher M.E. (1972). Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28: 240–243

    Article  ADS  Google Scholar 

  76. Wilson K.G., Kogut J. (1974). Renormalisation group and the ε expansion. Phys. Rep. 12: 75–200

    Article  ADS  Google Scholar 

  77. Wilson K.G. (1975). The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47: 773–840

    Article  ADS  Google Scholar 

  78. Zamolodchikov A.B. (1986). “Irreversibility” of the flux of the renormalization group in a 2D field theory. JETP Lett. 43: 730–732

    ADS  MathSciNet  Google Scholar 

  79. Zamolodchikov A.B. (1987). Renormalization group and perturbation theory about fixed points in two-dimensional field theory. Sov. J. Nucl. Phys. 46: 1090–1096

    MathSciNet  Google Scholar 

  80. Zamolodchikov A.B., Zamolodchikov Al.B. (1992). Massless factorized scattering and sigma models with topological terms. Nucl. Phys. B 379: 602–623

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Abdesselam.

Additional information

Communicated by J. Z. Imbrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdesselam, A. A Complete Renormalization Group Trajectory Between Two Fixed Points. Commun. Math. Phys. 276, 727–772 (2007). https://doi.org/10.1007/s00220-007-0352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0352-x

Keywords

Navigation