Skip to main content
Log in

A Review of Background and Application of ATPSs in Protein and Enzyme Extraction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This review article provides an overview of the fundamental background and application of aqueous two-phase systems (ATPSs) in protein and enzyme extraction. The types of ATPSs, including polymer/salt, polymer/polymer, alcohol/salt, surfactant-based, and ionic liquid-based ATPSs, are discussed, along with the unconventional ATPSs. Factors affecting partitioning in ATPSs, such as molecular weight and polymer concentration, pH, temperature, hydrophobicity, and affinity, are also examined. The article then focuses on the application of ATPSs in protein and enzyme extraction, including continuous processing and scaling-up. The future prospects, challenges, and limitations of ATPSs in this field are discussed, along with the challenges associated with their use in industry. The results section highlights the potential of citrate green salts as an alternative to sulfate and phosphate salts in salt-based ATPSs and the need for more research on using ionic liquids as an additive in ATPS types for protein and enzyme extraction. Overall, this review suggests combining cheap and environmentally friendly materials in ATPSs can be a practical solution for using ATPSs in the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. González-González, M., Ruiz-Ruiz, F.: Aqueous two-phase systems for the recovery of bioparticles. Aqueous Two-Phase Syst. Bioprocess Develop. Recov. Biol. Prod. (2017). https://doi.org/10.1007/978-3-319-59309-8_4

    Article  Google Scholar 

  2. Albertsson, P.: Fractionation of particles and macromolecules in aqueous two-phase systems. Biochem. Pharmacol. 5, 351–358 (1961). https://doi.org/10.1016/0006-2952(61)90028-4

    Article  CAS  PubMed  Google Scholar 

  3. González-González, M., Vázquez-Villegas, P., García-Salinas, C., Rito-Palomares, M.: Current strategies and challenges for the purification of stem cells. J. Chem. Technol. Biotechnol. 87, 2–10 (2012). https://doi.org/10.1002/jctb.2723

    Article  CAS  Google Scholar 

  4. Varadavenkatesan, T., Pai, S., Vinayagam, R., Pugazhendhi, A., Selvaraj, R.: Recovery of value-added products from wastewater using aqueous two-phase systems—A review. Sci. Total. Environ. 778, 146293 (2021). https://doi.org/10.1016/j.scitotenv.2021.146293

    Article  CAS  PubMed  Google Scholar 

  5. Albertsson, P.-Å.: Partition of cell particles and macromolecules in polymer two-phase systems. Adv. Protein Chem. 24, 309–341 (1970). https://doi.org/10.1016/S0065-3233(08)60244-2

    Article  CAS  PubMed  Google Scholar 

  6. Ratanapongleka, K.: Recovery of biological products in aqueous two phase systems. Int J Chem Eng Appl. 1, 191–198 (2010)

    CAS  Google Scholar 

  7. Hatti-Kaul, R.: Aqueous two-phase systems: a general overview. Mol. Biotechnol. 19, 269–277 (2001). https://doi.org/10.1385/MB:19:3:269

    Article  CAS  PubMed  Google Scholar 

  8. Khayati, G., Daghbandan, A., Gilvari, H., Pheyz-Sani, N.: Liquid–liquid equilibria of aqueous two-phase systems containing polyethylene glycol 4000 and two different salts of ammonium. Res. J. Appl. Sci. Eng. Technol. 3, 96–98 (2011)

    CAS  Google Scholar 

  9. Schmidt, A., Ventom, A., Asenjo, J.: Partitioning and purification of α-amylase in aqueous two-phase systems. Enzyme Microb. Technol. 16, 131–142 (1994). https://doi.org/10.1016/0141-0229(94)90076-0

    Article  CAS  Google Scholar 

  10. Pourkhanali, K., Babaie, S., Khayati, G.: Recovery of tartaric acid from aqueous solution by liquid membrane technique: optimization by Taguchi design of experimental methodology. Theor. Found. Chem. Eng. 54, 1195–1204 (2020). https://doi.org/10.1134/S0040579520060196

    Article  CAS  Google Scholar 

  11. Khayati, G., Talesh, S.A., Yazdanshenas, M.: Partitioning of propionic acid in polyethylene glycol/different salts of sulfate aqueous two-phase systems. Sep. Sci. Technol. 49, 2741–2747 (2014). https://doi.org/10.1080/01496395.2014.941490

    Article  CAS  Google Scholar 

  12. Khayati, G.: Optimization of propionic acid extraction by aqueous two-phase system using response surface methodology. Chem. Eng. Commun. 200, 667–677 (2013). https://doi.org/10.1080/00986445.2012.721032

    Article  CAS  Google Scholar 

  13. Shahriari, M., Akhavan, Z., Khayati, G.: Phase diagram study of polymer–salt-based aqueous two-phase systems for extraction of p-nitrophenol. J. Chem. Eng. Data 65, 5101–5109 (2020). https://doi.org/10.1021/acs.jced.0c00227

    Article  CAS  Google Scholar 

  14. Shahriari, M., Kiani, R., Khayati, G.: Study of phase behavior and Congo red dye partitioning in aqueous two-phase systems composed of hydrophilic alcohols (1-propanol/1-butanol) and sodium salts. Sep. Sci. Technol. 55, 1495–1504 (2020). https://doi.org/10.1080/01496395.2019.1594900

    Article  CAS  Google Scholar 

  15. Khayati, G., Mohamadian, O.: Effective extraction of Zn(II) ions using aqueous two-phase partitioning. Chem. Eng. Commun. 203, 236–241 (2016). https://doi.org/10.1080/00986445.2014.990633

    Article  CAS  Google Scholar 

  16. Khayati, G., Gilani, H.G., Safari Keyvani, Z.: Extraction of Cu(II) ions from aqueous media using PEG/sulphate salt aqueous two-phase system. Sep. Sci. Technol. 51, 601–608 (2016). https://doi.org/10.1080/01496395.2015.1119853

    Article  CAS  Google Scholar 

  17. Khayati, G., Shahriari, M.: Measurement and correlation of phase diagram data of hydrophilic alcohols (1-propanol/2-propanol) + salts (Na2SO4/(NH4)2SO4/NH4NO3) + water systems. Chem. Biochem. Eng. Q. 30, 73–80 (2016). https://doi.org/10.15255/CABEQ.2015.2308

    Article  CAS  Google Scholar 

  18. Asenjo, J.A., Andrews, B.A.: Aqueous two-phase systems for protein separation: a perspective. J. Chromatogr. A 1218, 8826–8835 (2011). https://doi.org/10.1016/j.chroma.2011.06.051

    Article  CAS  PubMed  Google Scholar 

  19. Anvari, M., Khayati, G.: In situ recovery of 2,3-butanediol from fermentation by liquid–liquid extraction. J. Ind. Microbiol. Biotechnol. 36, 313–317 (2009). https://doi.org/10.1007/s10295-008-0501-z

    Article  CAS  PubMed  Google Scholar 

  20. Albertsson, P.-Å., Cajarville, A., Brooks, D.E., Tjerneld, F.: Partition of proteins in aqueous polymer two-phase systems and the effect of molecular weight of the polymer. Biochim. Biophys. Acta Gen. Subj. 926, 87–93 (1987). https://doi.org/10.1016/0304-4165(87)90185-1

    Article  CAS  Google Scholar 

  21. Andersson, E., Hahn-Hägerdal, B.: Bioconversions in aqueous two-phase systems. Enzyme Microb. Technol. 12, 242–254 (1990). https://doi.org/10.1016/0141-0229(90)90095-8

    Article  CAS  PubMed  Google Scholar 

  22. Benavides, J., Rito-Palomares, M. & Asenjo, J.: Comprehensive Bio-Technology. 2nd ed. Elsevier New York, NY, USA (2011)

  23. Ramyadevi, D., Subathira, A., Saravanan, S.: Aqueous two-phase poly (ethylene glycol)–Maltodextrin system for protein partitioning from shrimp waste: Influence of molecular weight and pH. Int. J. Environ. Sci. 2, 2462–2469 (2012)

    CAS  Google Scholar 

  24. Khayati, G., Anvari, M.: Aqueous two-phase systems composed of different molecular weight of polyethylene glycol and diammonium phosphate for extraction of bovine serum albumin. Ital. J. Food Sci. 24, 279–283 (2012)

    CAS  Google Scholar 

  25. Rito-Palomares, M.: Practical application of aqueous two-phase partition to process development for the recovery of biological products. J. Chromatogr. B 807, 3–11 (2004). https://doi.org/10.1016/j.jchromb.2004.01.008

    Article  CAS  Google Scholar 

  26. Rogers, R.D., Bauer, C.B.: Partitioning behavior of group 1 and 2 cations in poly (ethylene glycol)-based aqueous biphasic systems. J. Chromatogr. B Biomed. Sci. Appl. 680, 237–241 (1996). https://doi.org/10.1016/0378-4347(95)00319-3

    Article  CAS  Google Scholar 

  27. Huddleston, J.G., Willauer, H.D., Rogers, R.D.: Phase diagram data for several PEG+ salt aqueous biphasic systems at 25 C. J. Chem. Eng. Data 48, 1230–1236 (2003). https://doi.org/10.1021/je034042p

    Article  CAS  Google Scholar 

  28. Zafarani-Moattar, M.T., Sadeghi, R.: Phase diagram data for several PPG+ salt aqueous biphasic systems at 25 C. J. Chem. Eng. Data 50, 947–950 (2005). https://doi.org/10.1021/je049570v

    Article  CAS  Google Scholar 

  29. Raja, S., Murty, V.R.: Development and evaluation of environmentally benign aqueous two phase systems for the recovery of proteins from tannery waste water. Int. Sch. Res. Notices (2012). https://doi.org/10.5402/2012/290471

    Article  Google Scholar 

  30. Yang, X., Lu, Y., Sun, Z., Cui, K., Tan, Z.: Measurement and correlation of phase equilibria in aqueous two-phase systems containing polyoxyethylene cetyl ether and three organic salts at different temperatures. J. Chem. Eng. Data 63, 625–634 (2018). https://doi.org/10.1021/acs.jced.7b00831

    Article  CAS  Google Scholar 

  31. Silvério, S.C., Rodríguez, O., Teixeira, J.A., Macedo, E.A.: Liquid−liquid equilibria of UCON+(sodium or potassium) phosphate salt aqueous two-phase systems at 23 C. J. Chem. Eng. Data 55, 1285–1288 (2010). https://doi.org/10.1021/je900628m

    Article  CAS  Google Scholar 

  32. Sadeghi, R., Kahaki, H.B.: Thermodynamics of aqueous solutions of poly ethylene glycol di-methyl ethers in the presence or absence of ammonium phosphate salts. Fluid Phase Equilib. 306, 219–228 (2011). https://doi.org/10.1016/j.fluid.2011.04.012

    Article  CAS  Google Scholar 

  33. Ng, H.S., Kee, P.E., Yim, H.S., Tan, J.S., Chow, Y.H., Lan, J.C.-W.: Characterization of alcohol/salt aqueous two-phase system for optimal separation of gallic acids. J. Biosci. Bioeng. 131, 537–542 (2021). https://doi.org/10.1016/j.jbiosc.2021.01.004

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M.A.B.: Aqueous two-phase system (ATPS): an overview and advances in its applications. Biol. Proced. Online 18, 1–18 (2016). https://doi.org/10.1186/s12575-016-0048-8

    Article  CAS  Google Scholar 

  35. Oppermann, S., Stein, F., Kragl, U.: Ionic liquids for two-phase systems and their application for purification, extraction and biocatalysis. Appl. Microbiol. Biotechnol. 89, 493–499 (2011). https://doi.org/10.1007/s00253-010-2933-4

    Article  CAS  PubMed  Google Scholar 

  36. Chia, S.R., Show, P.L., Phang, S.-M., Ling, T.C., Ong, H.C.: Sustainable approach in phlorotannin recovery from macroalgae. J. Biosci. Bioeng. 126, 220–225 (2018). https://doi.org/10.1016/j.jbiosc.2018.02.015

    Article  CAS  PubMed  Google Scholar 

  37. Ferreira, A.M., Coutinho, J.A., Fernandes, A.M., Freire, M.G.: Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems. Sep. Purif. Technol. 128, 58–66 (2014). https://doi.org/10.1016/j.seppur.2014.02.036

    Article  CAS  Google Scholar 

  38. McQueen, L., Lai, D.: Ionic liquid aqueous two-phase systems from a pharmaceutical perspective. Front. Chem. 7, 135 (2019). https://doi.org/10.3389/fchem.2019.00135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ventura, S.P., Santos-Ebinuma, V.C., Pereira, J.F., Teixeira, M.F., Pessoa, A., Coutinho, J.A.: Isolation of natural red colorants from fermented broth using ionic liquid-based aqueous two-phase systems. J. Ind. Microbiol. Biotechnol. 40, 507–516 (2013). https://doi.org/10.1007/s10295-013-1237-y

    Article  CAS  PubMed  Google Scholar 

  40. Mayolo-Deloisa, K., del Refugio Trejo-Hernandez, M., Rito-Palomares, M.: Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochem. 44, 435–439 (2009). https://doi.org/10.1016/j.procbio.2008.12.010

    Article  CAS  Google Scholar 

  41. Santos, P.L., Santos, L.N.S., Ventura, S.P.M., de Souza, R.L., Coutinho, J.A.P., Soares, C.M.F., Lima, A.S.: Recovery of capsaicin from Capsicum frutescens by applying aqueous two-phase systems based on acetonitrile and cholinium-based ionic liquids. Chem. Eng. Res. Des. 112, 103–112 (2016). https://doi.org/10.1016/j.cherd.2016.02.031

    Article  CAS  Google Scholar 

  42. de Souza, R.L., Campos, V.C., Ventura, S.P., Soares, C.M., Coutinho, J.A., Lima, Á.S.: Effect of ionic liquids as adjuvants on PEG-based ABS formation and the extraction of two probe dyes. Fluid Phase Equilib. 375, 30–36 (2014). https://doi.org/10.1016/j.fluid.2014.04.011

    Article  CAS  Google Scholar 

  43. Ostadjoo, S., Berton, P., Shamshina, J.L., Rogers, R.D.: Scaling-up ionic liquid-based technologies: how much do we care about their toxicity? Prima facie information on 1-ethyl-3-methylimidazolium acetate. Toxicol. Sci. 161, 249–265 (2018). https://doi.org/10.1093/toxsci/kfx172

    Article  CAS  PubMed  Google Scholar 

  44. da Rocha Patrício, P., Mesquita, M.C., da Silva, L.H.M., da Silva, M.C.H.: Application of aqueous two-phase systems for the development of a new method of cobalt(II), iron(III) and nickel(II) extraction: A green chemistry approach. J. Hazard. Mater. 193, 311–318 (2011). https://doi.org/10.1016/j.jhazmat.2011.07.062

    Article  CAS  Google Scholar 

  45. He, C., Li, S., Liu, H., Li, K., Liu, F.: Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. J. Chromatogr. A 1082, 143–149 (2005). https://doi.org/10.1016/j.chroma.2005.05.065

    Article  CAS  PubMed  Google Scholar 

  46. Pei, Y., Li, L., Li, Z., Wu, C., Wang, J.: Partitioning behavior of wastewater proteins in some ionic liquids-based aqueous two-phase systems. Sep. Sci. Technol. 47, 277–283 (2012). https://doi.org/10.1080/01496395.2011.609241

    Article  CAS  Google Scholar 

  47. Tani, H., Kamidate, T., Watanabe, H.: Aqueous micellar two-phase systems for protein separation. Anal. Sci. 14, 875–888 (1998). https://doi.org/10.2116/analsci.14.875

    Article  CAS  Google Scholar 

  48. Safonova, E.A., Mehling, T., Storm, S., Ritter, E., Smirnova, I.V.: Partitioning equilibria in multicomponent surfactant systems for design of surfactant-based extraction processes. Chem. Eng. Res. Des. 92, 2840–2850 (2014). https://doi.org/10.1016/j.cherd.2014.04.005

    Article  CAS  Google Scholar 

  49. Liu, Y., Wu, Z., Dai, J.: Phase equilibrium and protein partitioning in aqueous micellar two-phase system composed of surfactant and polymer. Fluid Phase Equilib. 320, 60–64 (2012). https://doi.org/10.1016/j.fluid.2012.02.002

    Article  CAS  Google Scholar 

  50. Andrews, B., Pyle, D., Asenjo, J.: The effects of pH and ionic strength on the partitioning of four proteins in reverse micelle systems. Biotechnol. Bioeng. 43, 1052–1058 (1994). https://doi.org/10.1002/bit.260431108

    Article  CAS  PubMed  Google Scholar 

  51. Lye, G., Asenjo, J., Pyle, D.: Extraction of lysozyme and ribonuclease-a using reverse micelles: limits to protein solubilization. Biotechnol. Bioeng. 47, 509–519 (1995). https://doi.org/10.1002/bit.260470502

    Article  CAS  PubMed  Google Scholar 

  52. Reh, G., Spelzini, D., Tubío, G., Picó, G., Farruggia, B.: Partition features and renaturation enhancement of chymosin in aqueous two-phase systems. J. Chromatogr. B 860, 98–105 (2007). https://doi.org/10.1016/j.jchromb.2007.10.012

    Article  CAS  Google Scholar 

  53. Weschayanwiwat, P., Kunanupap, O., Scamehorn, J.F.: Benzene removal from waste water using aqueous surfactant two-phase extraction with cationic and anionic surfactant mixtures. Chemosphere 72, 1043–1048 (2008). https://doi.org/10.1016/j.chemosphere.2008.03.065

    Article  CAS  PubMed  Google Scholar 

  54. Penido, J.A., Mageste, A.B., Martins, P.L., Ferreira, G.M.D.: Surfactant as selective modulator in the partitioning of dyes in aqueous two-phase systems: a strategy for separation. J. Mol. Liq. 293, 111501 (2019). https://doi.org/10.1016/j.molliq.2019.111501

    Article  CAS  Google Scholar 

  55. Zhang, J., Wang, Y., Peng, Q.: Phase behavior of aqueous two-phase systems of cationic and anionic surfactants and their application to theanine extraction. Korean J. Chem. Eng. 30, 1284–1288 (2013). https://doi.org/10.1007/s11814-013-0040-9

    Article  CAS  Google Scholar 

  56. A Tavanandi, H., Karley, D., Mittal, R., Venkatesh Murthy, K.: Contactors for aqueous two-phase extraction: a review. Curr. Biochem. Eng. 2, 148–167 (2015)

    Article  Google Scholar 

  57. Kee, P.E., Ng, T.-C., Lan, J.C.-W., Ng, H.-S.: Recent development of unconventional aqueous biphasic system: characteristics, mechanisms and applications. Crit. Rev. Biotechnol. 40, 555–569 (2020). https://doi.org/10.1080/07388551.2020.1747388

    Article  CAS  PubMed  Google Scholar 

  58. Wikström, P., Flygare, S., Gröndalen, A., Larsson, P.-O.: Magnetic aqueous two-phase separation: a new technique to increase rate of phase-separation, using dextran-ferrofluid or larger iron oxide particles. Anal. Biochem. 167, 331–339 (1987). https://doi.org/10.1016/0003-2697(87)90173-4

    Article  PubMed  Google Scholar 

  59. Flygare, S., Wikström, P., Johansson, G., Larsson, P.-O.: Magnetic aqueous two-phase separation in preparative applications. Enzyme Microb. Technol. 12, 95–103 (1990). https://doi.org/10.1016/0141-0229(90)90080-A

    Article  CAS  PubMed  Google Scholar 

  60. Kumar, A., Srivastava, A., Galaev, I.Y., Mattiasson, B.: Smart polymers: physical forms and bioengineering applications. Prog. Polym. Sci. 32, 1205–1237 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.003

    Article  CAS  Google Scholar 

  61. Harris, P., Karlström, G., Tjerneld, F.: Enzyme purification using temperature-induced phase formation. Bioseparation 2, 237–246 (1991)

    CAS  PubMed  Google Scholar 

  62. Wang, D., Zhao, T., Zhu, X., Yan, D., Wang, W.: Bioapplications of hyperbranched polymers. Chem. Soc. Rev. 44, 4023–4071 (2015). https://doi.org/10.1039/C4CS00229F

    Article  CAS  PubMed  Google Scholar 

  63. Kulaguin-Chicaroux, A., Zeiner, T.: Novel aqueous two-phase system based on a hyperbranched polymer. Fluid Phase Equilib. 362, 1–10 (2014). https://doi.org/10.1016/j.fluid.2013.07.059

    Article  CAS  Google Scholar 

  64. Gao, C., Yan, D., Frey, H.: Promising dendritic materials: an introduction to hyperbranched polymers. Hyperbranch. Polym.: Synth., Prop. Appl.. (2011). https://doi.org/10.1002/9780470929001.ch1

    Article  Google Scholar 

  65. Raja, S., Murty, V.R., Thivaharan, V., Rajasekar, V., Ramesh, V.: Aqueous two phase systems for the recovery of biomolecules–a review. Sci. Technol. 1, 7–16 (2011). https://doi.org/10.5923/j.scit.20110101.02

    Article  Google Scholar 

  66. Monteiro-Junior, E.G., Costa, J.M., Jimenez, O.A., de Souza, B.R., Medeiros, A.C., Basso, R.C.: Anion effects on the liquid–liquid equilibrium behavior of pluronic L64 + water + sodium salts at different pH: determination of thermodynamic parameters. Colloids Interfaces. 7, 4 (2023). https://doi.org/10.3390/colloids7010004

    Article  CAS  Google Scholar 

  67. Chu, I.-M., Chen, W.-Y.: Partition of amino acids and peptides in aqueous two-phase systems. In: Hatti-Kaul, R. (ed.) Aqueous Two-Phase Systems, pp. 95–105. Humana Press, New Jersey (2000)

    Chapter  Google Scholar 

  68. Zaslavsky, B.Y.: Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. CRC Press, Boca Raton (1994)

    Google Scholar 

  69. Goja, A.M., Yang, H., Cui, M., Li, C.: Aqueous two-phase extraction advances for bioseparation. J. Bioprocess. Biotechnol. 4, 1–8 (2013). https://doi.org/10.4172/2155-9821.1000140

    Article  CAS  Google Scholar 

  70. Rosa, P., Azevedo, A., Sommerfeld, S., Mutter, M., Aires-Barros, M., Bäcker, W.: Application of aqueous two-phase systems to antibody purification: a multi-stage approach. J. Biotechnol. 139, 306–313 (2009). https://doi.org/10.1016/j.jbiotec.2009.01.001

    Article  CAS  PubMed  Google Scholar 

  71. Ferreira, L.A., Teixeira, J.A., Mikheeva, L.M., Chait, A., Zaslavsky, B.Y.: Effect of salt additives on partition of nonionic solutes in aqueous PEG–sodium sulfate two-phase system. J. Chromatogr. A 1218, 5031–5039 (2011). https://doi.org/10.1016/j.chroma.2011.05.068

    Article  CAS  PubMed  Google Scholar 

  72. Hatti-Kaul, R.: Aqueous Two-Phase Systems: Methods and Protocols. Springer, Cham (2008)

    Google Scholar 

  73. Huddleston, J.G., Ottomar, K.W., Ngonyani, D.M., Lyddiatt, A.: Influence of system and molecular parameters upon fractionation of intracellular proteins from Saccharomyces by aqueous two-phase partition. Enzyme Microb. Technol. 13, 24–32 (1991)

    Article  CAS  PubMed  Google Scholar 

  74. Azevedo, A., Rosa, P., Ferreira, I., Pisco, A., De Vries, J., Korporaal, R., Visser, T., Aires-Barros, M.: Affinity-enhanced purification of human antibodies by aqueous two-phase extraction. Sep. Purif. Technol. 65, 31–39 (2009). https://doi.org/10.1016/j.seppur.2008.03.006

    Article  CAS  Google Scholar 

  75. Soares, R.R., Azevedo, A.M., Van Alstine, J.M., Aires-Barros, M.R.: Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats. Biotechnol. J. 10, 1158–1169 (2015). https://doi.org/10.1002/biot.201400532

    Article  CAS  PubMed  Google Scholar 

  76. Ruiz-Ruiz, F., Benavides, J., Aguilar, O., Rito-Palomares, M.: Aqueous two-phase affinity partitioning systems: current applications and trends. J. Chromatogr. A 1244, 1–13 (2012). https://doi.org/10.1016/j.chroma.2012.04.077

    Article  CAS  PubMed  Google Scholar 

  77. Phong, W.N., Show, P.L., Chow, Y.H., Ling, T.C.: Recovery of biotechnological products using aqueous two phase systems. J. Biosci. Bioeng. 126, 273–281 (2018). https://doi.org/10.1016/j.jbiosc.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  78. Lee, S.Y., Khoiroh, I., Ooi, C.W., Ling, T.C., Show, P.L.: Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep. Purif. Rev. 46, 291–304 (2017). https://doi.org/10.1080/15422119.2017.1279628

    Article  CAS  Google Scholar 

  79. Diamond, A., Hsu, J.: Aqueous two-phase systems for biomolecule separation. Bioseparation (2006). https://doi.org/10.1007/BFb00461

    Article  Google Scholar 

  80. Walter, H.: Partitioning in aqueous two–phase system: theory, methods, uses, and applications to biotechnology. Elsevier, Cham (2012)

    Google Scholar 

  81. Strandberg, L., Hober, S., Uhlén, M., Enfors, S.-O.: Expression and characterization of a tripartite fusion protein consisting of chimeric IgG-binding receptors and β-galactosidase. J. Biotechnol. 13, 83–96 (1990). https://doi.org/10.1016/0168-1656(90)90133-V

    Article  CAS  PubMed  Google Scholar 

  82. Skuse, D., Norris-Jones, R., Yalpani, M., Brooks, D.: Hydroxypropyl cellulose/poly (ethylene glycol)-co-poly (propylene glycol) aqueous two-phase systems: System characterization and partition of cells and proteins. Enzyme Microb. Technol. 14, 785–790 (1992). https://doi.org/10.1016/0141-0229(92)90093-4

    Article  CAS  PubMed  Google Scholar 

  83. Kan, P., Lee, C.: Application of aqueous two-phase system in separation/purification of stroma free hemoglobin from animal blood. Artif. Cells, Blood Substit. Biotechnol. 22, 641–649 (1994). https://doi.org/10.3109/10731199409117894

    Article  CAS  Google Scholar 

  84. Großmann, C., Zhu, J., Maurer, G.: Phase equilibrium studies on aqueous two-phase systems containing amino acids and peptides. Fluid Phase Equilib. 82, 275–282 (1993). https://doi.org/10.1016/0378-3812(93)87151-P

    Article  Google Scholar 

  85. Su, Z.G., Feng, X.L.: Process integration of cell disruption and aqueous two-phase extraction. J. Chem. Techno. Biotechnol.: Int. Res. Process, Environ. Clean Technol. 74, 284–288 (1999)

    Article  CAS  Google Scholar 

  86. Van der Wielen, L., Rudolph, E.: On the generalization of thermodynamic properties for selection of bioseparation processes. J. Chem. Technol. Biotechnol.: Int. Res. Process, Environ. Clean Technol. 74, 275–283 (1999). https://doi.org/10.1002/(SICI)1097-4660(199903)74:3%3C275::AID-JCTB32%3E3.0.CO;2-N

    Article  Google Scholar 

  87. Yokoyama, C., Terui, M., Takahashi, S.: Salt effect on partition coefficient of glycine, L-valine, and L-phenyl alanine in n-octanol-water system. Fluid Phase Equilib. 82, 283–290 (1993). https://doi.org/10.1016/0378-3812(93)87152-Q

    Article  CAS  Google Scholar 

  88. Rito-Palomares, M., Lyddiatt, A.: Practical implementation of aqueous two-phase processes for protein recovery from yeast. J. Chem. Technol. Biotechnol.: Int. Res. Process, Environ. Clean Technol. 75, 632–638 (2000)

    Article  CAS  Google Scholar 

  89. Platis, D., Labrou, N.E.: Development of an aqueous two-phase partitioning system for fractionating therapeutic proteins from tobacco extract. J. Chromatogr. A 1128, 114–124 (2006). https://doi.org/10.1016/j.chroma.2006.06.047

    Article  CAS  PubMed  Google Scholar 

  90. Hernandez-Mireles, T., Rito-Palomares, M.: New aqueous two-phase systems based on poly (ethylene oxide sulfide)(PEOS) and potassium phosphate for the potential recovery of proteins. J. Chem. Technol. Biotechnol. 81, 997–1002 (2006). https://doi.org/10.1002/jctb.1506

    Article  CAS  Google Scholar 

  91. Hernandez-Mireles, I., Benavides, J., Rito-Palomares, M.: Practical approach to protein recovery by countercurrent distribution in aqueous two-phase systems. J. Chem. Technol. Biotechnol. 83, 163–166 (2008). https://doi.org/10.1002/jctb.1806

    Article  CAS  Google Scholar 

  92. Garza-Madrid, M., Rito-Palomares, M., Serna-Saldívar, S.O., Benavides, J.: Potential of aqueous two-phase systems constructed on flexible devices: human serum albumin as proof of concept. Process Biochem. 45, 1082–1087 (2010). https://doi.org/10.1016/j.procbio.2010.03.026

    Article  CAS  Google Scholar 

  93. Galindo-López, M., Rito-Palomares, M.: Practical non-chromatography strategies for the potential separation of PEGylated RNase A conjugates. J. Chem. Technol. Biotechnol. 88, 49–54 (2013). https://doi.org/10.1002/jctb.3941

    Article  CAS  Google Scholar 

  94. Bhambure, R., Sharma, R., Gupta, D., Rathore, A.S.: A novel aqueous two phase assisted platform for efficient removal of process related impurities associated with E. coli based biotherapeutic protein products. J. Chromatogr. A 1307, 49–57 (2013). https://doi.org/10.1016/j.chroma.2013.07.085

    Article  CAS  PubMed  Google Scholar 

  95. Rathore, A.S., Bhambure, R.: Aqueous two-phase-assisted precipitation of proteins: a platform for isolation of process-related impurities from therapeutic proteins. Prot. Downstream Process. 4, 5–6 (2014). https://doi.org/10.1007/978-1-62703-977-2_10

    Article  CAS  Google Scholar 

  96. Van Winssen, F., Merz, J., Czerwonka, L.-M., Schembecker, G., Dortmund, T.: Application of the tunable aqueous polymer-phase impregnated resins-technology for protein purification. Sep. Purif. Technol. 136, 123–129 (2014). https://doi.org/10.1016/j.seppur.2014.08.030

    Article  CAS  Google Scholar 

  97. Aumiller, W.M., Jr., Davis, B.W., Hashemian, N., Maranas, C., Armaou, A., Keating, C.D.: Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system. J. Phys. Chem. B 118, 2506–2517 (2014). https://doi.org/10.1021/jp501126v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Vázquez-Villegas, P., Espitia-Saloma, E., Torres-Acosta, M.A., Ruiz-Ruiz, F., Rito-Palomares, M., Aguilar, O.: Factorial and economic evaluation of an aqueous two-phase partitioning pilot plant for invertase recovery from spent brewery yeast. Front. Chem. 6, 454 (2018). https://doi.org/10.3389/fchem.2018.00454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Campos-García, V.R., Benavides, J., González-Valdez, J.: Reactive aqueous two-phase systems for the production and purification of PEGylated proteins. Electron. J. Biotechnol. 54, 60–68 (2021). https://doi.org/10.1016/j.ejbt.2021.09.003

    Article  CAS  Google Scholar 

  100. Alves, R.O., de Oliveira, R.L., da Silva, O.S., Porto, A.L.F., Porto, C.S., Porto, T.S.: Extractive fermentation for process integration of protease production by Aspergillus tamarii Kita UCP1279 and purification by PEG-Citrate Aqueous Two-Phase System. Prep. Biochem. Biotechnol. 52, 30–37 (2022). https://doi.org/10.1080/10826068.2021.1904257

    Article  CAS  PubMed  Google Scholar 

  101. Mendes, M.S., Rosa, M.E., Coutinho, J.A., Freire, M.G., e Silva, F.A.: Improved accuracy in pentraxin-3 quantification assisted by aqueous biphasic systems as serum pretreatment strategies. Int. J. Biol. Macromol. 253, 127540 (2023). https://doi.org/10.1016/j.ijbiomac.2023.127540

    Article  CAS  PubMed  Google Scholar 

  102. Selvakumar, P., Ling, T.C., Covington, A.D., Lyddiatt, A.: Enzymatic hydrolysis of bovine hide and recovery of collagen hydrolysate in aqueous two-phase systems. Sep. Purif. Technol. 89, 282–287 (2012). https://doi.org/10.1016/j.seppur.2012.01.046

    Article  CAS  Google Scholar 

  103. Saravanan, S., Rao, J.R., Murugesan, T., Nair, B.U., Ramasami, T.: Recovery of value-added globular proteins from tannery wastewaters using PEG–salt aqueous two-phase systems. J. Chem. Technol. Biotechnol. 81, 1814–1819 (2006). https://doi.org/10.1002/jctb.1608

    Article  CAS  Google Scholar 

  104. Khayati, G., Anvari, M., Shahidi, N.: Partitioning of β-galactosidase in aqueous two-phase systems containing polyethyleneglycol and phosphate salts. Fluid Phase Equilib. 385, 147–152 (2015). https://doi.org/10.1016/j.fluid.2014.11.003

    Article  CAS  Google Scholar 

  105. Khayati, G., Alizadeh, G.: Extraction of lipase enzyme produced by Aspergillus niger fungus from fermented broth using aqueous two-phase system. Sep. Sci. Eng. J. 7, 45–53 (2015). https://doi.org/10.22103/jsse.2015.870

    Article  Google Scholar 

  106. Khayati, G., Firouzi, G., Ahmadi, M.: Extraction of protease enzyme using aqueous two-phase systems containing polyethylene glycol and sodium and potassium citrate salts. Sep. Sci. Eng. J. 8, 1–6 (2016). https://doi.org/10.22103/jsse.2016.1143

    Article  Google Scholar 

  107. Tjerneld, F., Johansson, H.-O.: Compartmentalization of enzymes and distribution of products in aqueous two-phase systems. Int. Rev. Cytol. 192, 137–151 (1999). https://doi.org/10.1016/S0074-7696(08)60524-0

    Article  Google Scholar 

  108. Marando, M.A., Clark, W.M.: Two-phase electrophoresis of proteins. Sep. Sci. Technol. 28, 1561–1577 (1993). https://doi.org/10.1080/01496399308018058

    Article  CAS  Google Scholar 

  109. Davis, B.W., Aumiller, W.M., Hashemian, N., An, S., Armaou, A., Keating, C.D.: Colocalization and sequential enzyme activity in aqueous biphasic systems: experiments and modeling. Biophys. J. 109, 2182–2194 (2015). https://doi.org/10.1016/j.bpj.2015.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Glyk, A., Scheper, T., Beutel, S.: PEG–salt aqueous two-phase systems: an attractive and versatile liquid–liquid extraction technology for the downstream processing of proteins and enzymes. Appl. Microbiol. Biotechnol. 99, 6599–6616 (2015). https://doi.org/10.1007/s00253-015-6779-7

    Article  CAS  PubMed  Google Scholar 

  111. Castro, L.S., Pereira, P., Passarinha, L.A., Freire, M.G., Pedro, A.Q.: Enhanced performance of polymer-polymer aqueous two-phase systems using ionic liquids as adjuvants towards the purification of recombinant proteins. Sep. Purif. Technol. 248, 117051 (2020). https://doi.org/10.1016/j.seppur.2020.117051

    Article  CAS  Google Scholar 

  112. Chen, J.-P., Lee, M.-S.: Enhanced production of Serratia marcescens chitinase in PEG/dextran aqueous two-phase systems. Enzyme Microb. Technol. 17, 1021–1027 (1995). https://doi.org/10.1016/0141-0229(95)00030-5

    Article  CAS  Google Scholar 

  113. Andrews, B., Head, D., Dunthorne, P., Asenjo, J.: PEG activation and ligand binding for the affinity partitioning of proteins in aqueous two-phase systems. Biotechnol. Tech. 4, 49–54 (1990). https://doi.org/10.1007/BF00156610

    Article  CAS  Google Scholar 

  114. Li, P., Xue, H., Xiao, M., Tang, J., Yu, H., Su, Y., Cai, X.: Ultrasonic-assisted aqueous two-phase extraction and properties of water-soluble polysaccharides from malus hupehensis. Molecules 26, 2213 (2021). https://doi.org/10.3390/molecules26082213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Luo, R., Yao, X., Liu, X., Zhang, Y., Ying, X.: Evaluation of the nitric oxide and nitrite scavenging capability, n-nitrosamine formation inhibitory activity, and optimization of ultrasound-assisted aqueous two-phase system extraction of total saponins from coreopsis tinctoria flowering tops by response surface methodology. Appl. Biochem. Biotechnol. 184, 763–776 (2018). https://doi.org/10.1007/s12010-017-2574-5

    Article  CAS  PubMed  Google Scholar 

  116. Nascimento, P.A., Alves, A.N., dos Santos, K.A., Veloso, C.M., Santos, L.S., da Costa Ilhéu Fontan, R., Sampaio, V.S. & Bonomo, R.C.F.: Partitioning of pequi seed (Caryocar brasiliense Camb.) lipase in aqueous two-phase systems composed of PEG/2-propanol+ ammonium sulfate+ water. Brazil. J. Chem. Eng. 38, 957–965 (2021). https://doi.org/10.1007/s43153-021-00154-x

    Article  CAS  Google Scholar 

  117. Ooi, C.W., Tey, B.T., Hii, S.L., Kamal, S.M.M., Lan, J.C.W., Ariff, A., Ling, T.C.: Purification of lipase derived from Burkholderia pseudomallei with alcohol/salt-based aqueous two-phase systems. Process Biochem. 44, 1083–1087 (2009). https://doi.org/10.1016/j.procbio.2009.05.008

    Article  CAS  Google Scholar 

  118. Chen, J.-P., Jen, J.-T.: Extraction of concanavalin A with affinity reversed micellar systems. Sep. Sci. Technol. 29, 1115–1132 (1994). https://doi.org/10.1080/01496399408005621

    Article  CAS  Google Scholar 

  119. Jozala, A.F., Lopes, A.M., de Lencastre Novaes, L.C., Mazzola, P.G., Penna, T.C.V., Júnior, A.P.: Aqueous two-phase micellar system for nisin extraction in the presence of electrolytes. Food Bioprocess Technol. 6, 3456–3461 (2013). https://doi.org/10.1007/s11947-012-1008-1

    Article  CAS  Google Scholar 

  120. Lopes, A.M., Silva, D.P., Vicente, A.A., Pessoa-Jr, A., Teixeira, J.A.: Aqueous two-phase micellar systems in an oscillatory flow micro-reactor: study of perspectives and experimental performance. J. Chem. Technol. Biotechnol. 86, 1159–1165 (2011). https://doi.org/10.1002/jctb.2642

    Article  CAS  Google Scholar 

  121. Xie, X., Huang, W., Chen, T., He, X., Han, J., Wang, Y., Zhou, Y.: Construction of aqueous two-phase systems composed of cholinium deep eutectic solvents and salts for separation and purification of recombinant β-glucosidase. J. Iran. Chem. Soc. 20, 1165–1178 (2023). https://doi.org/10.1007/s13738-023-02744-7

    Article  CAS  Google Scholar 

  122. Suzuki, M., Kamihira, M., Shiraishi, T., Takeuchi, H., Kobayashi, T.: Affinity partitioning of protein A using a magnetic aqueous two-phase system. J. Ferment. Bioeng. 80, 78–84 (1995). https://doi.org/10.1016/0922-338X(95)98180-S

    Article  CAS  Google Scholar 

  123. Kamihira, M.: Affinity partitioning using magnetic two-phase systems. Aqueous Two-Phase Syst. (2000). https://doi.org/10.1385/1-59259-028-4:381

    Article  Google Scholar 

  124. Dhadge, V.L., Rosa, S.A., Azevedo, A., Aires-Barros, R., Roque, A.C.: Magnetic aqueous two phase fishing: a hybrid process technology for antibody purification. J. Chromatogr. A 1339, 59–64 (2014). https://doi.org/10.1016/j.chroma.2014.02.069

    Article  CAS  PubMed  Google Scholar 

  125. Ng, H.S., Tan, C.P., Mokhtar, M.N., Ibrahim, S., Ariff, A., Ooi, C.W., Ling, T.C.: Recovery of Bacillus cereus cyclodextrin glycosyltransferase and recycling of phase components in an aqueous two-phase system using thermo-separating polymer. Sep. Purif. Technol. 89, 9–15 (2012). https://doi.org/10.1016/j.seppur.2011.12.028

    Article  CAS  Google Scholar 

  126. Pereira, M., Wu, Y.-T., Venâncio, A., Teixeira, J.: Aqueous two-phase extraction using thermoseparating polymer: a new system for the separation of endo-polygalacturonase. Biochem. Eng. J. 15, 131–138 (2003). https://doi.org/10.1016/S1369-703X(02)00190-0

    Article  CAS  Google Scholar 

  127. Bolognese, B., Nerli, B., Picó, G.: Application of the aqueous two-phase systems of ethylene and propylene oxide copolymer-maltodextrin for protein purification. J. Chromatogr. B 814, 347–353 (2005). https://doi.org/10.1016/j.jchromb.2004.10.057

    Article  CAS  Google Scholar 

  128. Chicaroux, A.K., Plath, M., Zeiner, T.: Hyperbranched polymers as phase forming components in aqueous two-phase extraction. Chem. Eng. Process. 99, 167–174 (2016). https://doi.org/10.1016/j.cep.2015.07.022

    Article  CAS  Google Scholar 

  129. Rosa, P., Ferreira, I., Azevedo, A., Aires-Barros, M.: Aqueous two-phase systems: a viable platform in the manufacturing of biopharmaceuticals. J. Chromatogr. A 1217, 2296–2305 (2010). https://doi.org/10.1016/j.chroma.2009.11.034

    Article  CAS  PubMed  Google Scholar 

  130. Espitia-Saloma, E., Vázquez-Villegas, P., Aguilar, O., Rito-Palomares, M.: Continuous aqueous two-phase systems devices for the recovery of biological products. Food Bioprod. Process. 92, 101–112 (2014). https://doi.org/10.1016/j.fbp.2013.05.006

    Article  CAS  Google Scholar 

  131. Das, L., Paik, S.P., Sen, K.: Thermoseparative regeneration of triblock copolymer after aqueous biphasic extraction of molybdate species. J. Chem. Eng. Data 64, 51–59 (2018). https://doi.org/10.1021/acs.jced.8b00455

    Article  CAS  Google Scholar 

  132. Saha, N., Sarkar, B., Sen, K.: Aqueous biphasic systems: A robust platform for green extraction of biomolecules. J. Mol. Liq. (2022). https://doi.org/10.1016/j.molliq.2022.119882

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Khayati.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article and the authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, E., Khayati, G. A Review of Background and Application of ATPSs in Protein and Enzyme Extraction. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01380-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01380-w

Keywords

Navigation