Skip to main content

Advertisement

Log in

Interaction Between an Active Pharmaceutical Ingredient Ionic Liquid Benzalkonium Salicylate and Small Biomolecules in Aqueous Solution: UV Absorption, Conductivity, and Volumetric Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

UV absorption spectroscopy, electrical conductivity and density experiments have been used to investigate the interactions of some small biomolecules (amino acids/dipeptides) with an active pharmaceutical ingredient in ionic liquid form (API-IL), benzalkonium salicylate (BaSal), in aqueous solution. A number of useful parameters, such as critical micellar concentration (cmc), aggregation number (Nagg) and limiting molar conductivity (Λ0) of BaSal, standard partial molar volumes (\(V_{2,\phi }^{ \circ }\)), corresponding volumes of transfer from water to aqueous BaSal solutions (ΔtrVo), standard partial molar expansibilities (\(E_{\phi }^{ \circ }\)), hydration number (nH) of small biomolecules, as well as the binding constants (Kb) for small biomolecule–BaSal complexes have been evaluated. The dependence of the properties on concentration, temperature and alkyl chain length of amino acids/dipeptides is examined. The results are used to identify the solute–solvent physicochemical interactions occurring in the studied systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wei, D., Ivaska, A.: Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 607, 126–135 (2008)

    Article  CAS  Google Scholar 

  2. Sowmiah, S., Srinivasadesikan, V., Tseng, M.C., Chu, Y.H.: On the chemical stabilities of ionic liquids. Molecules 14, 3780–3813 (2009)

    Article  CAS  Google Scholar 

  3. Hallet, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 111, 3508–3576 (2011)

    Article  Google Scholar 

  4. Wang, T., Kaper, H., Antonietti, M., Smarsly, B.: Templating behavior of a long-chain ionic liquid in the hydrothermal synthesis of mesoporous silica. Langmuir 23, 1489–1495 (2007)

    Article  CAS  Google Scholar 

  5. Liu, H.T., Liu, Y., Li, J.H.: Ionic liquids in surface electrochemistry. Phys. Chem. Chem. Phys. 12, 1685–1697 (2010)

    Article  CAS  Google Scholar 

  6. Ren, J., Li, Z.Y., Liu, J., Pei, Y.C., Wang, H.Y., Wang, J.J.: Choline derivative ionic liquids-based aqueous two-phase systems: phase diagrams and partition of purine alkaloids. J. Chem. Thermodyn. 118, 51–57 (2018)

    Article  CAS  Google Scholar 

  7. Zhao, Y.L., Tian, L., Qiu, J.K., Li, Z.Y., Wang, H.Y., Cui, G.K., Zhang, S.J., Wang, J.J.: Remarkable synergistic effect between copper(I) and ionic liquids for promoting chemical fixation of CO2. J. CO2 Util. 22, 374–381 (2017)

    Article  CAS  Google Scholar 

  8. Bica, K., Rijksen, C., Nieuwenhuyzen, M., Rogers, R.D.: In search of pure liquid salt forms of aspirin: ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys. 12, 2011–2017 (2010)

    Article  CAS  Google Scholar 

  9. Stoimenovski, J., MacFarlane, D.R., Bica, K., Rogers, R.D.: Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res. 27, 521–526 (2010)

    Article  CAS  Google Scholar 

  10. Malhotra, S.V., Kumar, V.: A profile of the in vitro antitumor activity of imidazolium-based ionic liquids. Bioorg. Med. Chem. Lett. 20, 581–585 (2010)

    Article  CAS  Google Scholar 

  11. Maddali, K., Kumar, V., Marchand, C., Pommier, Y., Malhotra, S.V.: Biological evaluation of imidazolium- and ammonium-based salts as HIV-1 integrase inhibitors. Med. Chem. Comm. 2, 143–150 (2011)

    Article  CAS  Google Scholar 

  12. Pernak, J., Sobaszkiewicz, K., Mirska, I.: Anti-microbial activities of ionic liquids. Green Chem. 5, 52–56 (2003)

    Article  CAS  Google Scholar 

  13. Pinto, P.C.A.G., Ribeiro, D.M.G.P., Azevedo, A.M.O., Dela-Justina, V., Cunha, E., Bica, K., Vasiloiu, M., Reis, S.: Saraiva, M.L.M.F.S.: Active pharmaceutical ingredients based on salicylate ionic liquids: insights into the evaluation of pharmaceutical profiles. New J. Chem. 37, 4095–4102 (2013)

    Article  CAS  Google Scholar 

  14. Fei, Z., Geldbach, T.J., Zhao, D., Dyson, P.J.: From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem. A Eur. J. 12, 2122–2130 (2006)

    Article  CAS  Google Scholar 

  15. Shekaari, H., Zafarani-Moattar, M.T., Mirheydari, S.N.: Conductometric analysis of 1-butyl-3-methylimidazolium ibuprofenate as an active pharmaceutical ingredient ionic liquid (API-IL) in the aqueous amino acids solutions. J. Chem. Thermodyn. 103, 165–175 (2016)

    Article  CAS  Google Scholar 

  16. Shekaari, H., Zafarani-Moattar, M.T., Mirheydari, S.N.: Thermodynamic properties of 1-butyl-3-methylimidazolium salicylate as an active pharmaceutical ingredient ionic liquid (API-IL) in aqueous solutions of glycine and l-alanine at T = (288.15–318.15) K. Thermochim. Acta 637, 51–68 (2016)

    Article  CAS  Google Scholar 

  17. Yan, Z.N., Wen, X.L., Kang, Y.X., Chu, W.W.: Intermolecular interactions of α-amino acids and glycyl dipeptides with the drug domiphen bromide in Aqueous solutions analyzed by volumetric and UV–Vis spectroscopy methods. J. Chem. Thermodyn. 101, 300–307 (2016)

    Article  CAS  Google Scholar 

  18. Boutti, S., Graillat, C., McKenna, T.: A look at surfactant partitioning in polymeric latexes using conductivity measurements. Eur. Polym. J. 40, 2671–2677 (2004)

    Article  CAS  Google Scholar 

  19. Sová, J.O., Vitková, Z., Vitko, A.: Study of micelle properties and thermodynamics of micellization of the benzethonium chloride. Tenside Surf. Det. 49, 322–329 (2012)

    Article  Google Scholar 

  20. Chauhan, S., Singh, R., Sharma, K., Kumar, K.: Interaction study of anionic surfactant with aqueous non-ionic polymers from conductivity, density and speed of sound measurements. J. Surfactants Deterg. 18, 225–232 (2015)

    Article  CAS  Google Scholar 

  21. Carpena, P., Aguiar, J., Bernaola-Galvan, P., Ruiz, C.C.: Problems associated with the treatment of conductivity–concentration data in surfactant solutions: simulations and experiments. Langmuir 18, 6054–6058 (2002)

    Article  CAS  Google Scholar 

  22. Aguiar, J., Carpena, P., Molina-Bolivar, J.A., Ruiz, C.C.: On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 258, 116–122 (2003)

    Article  CAS  Google Scholar 

  23. Mukhim, T., Dey, J., Das, S., Ismail, K.: Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J. Colloid Interface Sci. 350, 511–515 (2010)

    Article  CAS  Google Scholar 

  24. Wang, H.Y., Feng, Q.Q., Wang, J.J., Zhang, H.C.: Salt effect on the aggregation behavior of 1-decyl-3-methylimidazolium bromide in aqueous solutions. J. Phys. Chem. B 114, 1380–1387 (2010)

    Article  CAS  Google Scholar 

  25. Rutyunyan, N.G., Arutyunyan, L.R., Grigoryan, V.V., Arutyunyan, R.S.: Effect of amino acids on the critical micellization concentration of different surfactants. Colloid J. 70, 666–668 (2008)

    Article  Google Scholar 

  26. Scott, R.L.: Some comments on the Benesi–Hildebrand equation. Recl. Trav. Chim. Pays-Bas 75, 787–789 (1956)

    Article  CAS  Google Scholar 

  27. Yan, Z.N., Liu, R.L., Wu, S.Y., Bai, X.R., Wang, J.J.: Effect of temperature on the interactions of glycyl dipeptides with sodium perfluorooctanoate in aqueous solution: volumetric, conductometric, and spectroscopic study. J. Chem. Thermodyn. 57, 360–366 (2013)

    Article  CAS  Google Scholar 

  28. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, Monograph Series, 3rd edn. American Chemical Society, Washington, DC (1950)

    Google Scholar 

  29. Kimizuka, H., Satake, L.: Estimation of micellar charge from conductivity data of aqueous detergent solutions. Bull. Chem. Soc. Jpn 35, 251–253 (1962)

    Article  CAS  Google Scholar 

  30. Redlich, O., Meyer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)

    Article  CAS  Google Scholar 

  31. Zhang, J., Zhu, C.Y., Ma, Y.G.: Volumetric and viscometric properties of amino acids in aqueous maltitol solutions at T = (293.15–323.15) K. J. Chem. Thermodyn. 111, 52–64 (2017)

    Article  CAS  Google Scholar 

  32. Wen, X.L., Yan, Z.N., Kang, Y.X., Zhang, S.Y.: Apparent molar volume, conductivity, and fluorescence studies of ternary systems of dipeptides + ionic liquids ([C(n)Mim]Br, n = 10, 14) + water at different temperatures. Colloid Polym. Sci. 293, 2485–2495 (2015)

    Article  CAS  Google Scholar 

  33. Yan, Z.N., Wang, J.J., Liu, W.B., Lu, J.S.: Apparent molar volumes and viscosity B-coefficients of some amino acids in aqueous solutions from 278.15 to 308.15 K. Thermochim. Acta 334, 17–27 (1999)

    Article  CAS  Google Scholar 

  34. Pal, A., Chauhan, N.: Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures. J. Chem. Thermodyn. 43, 140–146 (2011)

    Article  CAS  Google Scholar 

  35. Mishra, A.K., Ahluwalia, J.C.: Apparent molal volumes of amino acids, N-acetylamino acids, and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)

    Article  CAS  Google Scholar 

  36. Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  37. Berlin, E., Pallansch, M.J.: Densities of several proteins and l-amino acids in the dry state. J. Phys. Chem. 72, 1887–1889 (1968)

    Article  CAS  Google Scholar 

  38. Yan, Z.N., Zhao, Y., Xing, R.H., Wang, X.G., Wang, J.J.: Volumetric and conductometric behavior at T = 298.15 K of 2-[(2-aminoacetyl)amino]acetic acid, 2-[(2-aminoacetyl)amino]-3-methylbutanoic acid, and (2S)-2-[(2-aminoacetyl)amino]-4-methylpentanoic acid with sodium hexanoate. J. Chem. Eng. Data 55, 759–764 (2010)

    Article  CAS  Google Scholar 

  39. Gaba, R., Pal, A., Sharma, D.: Solvation behavior of glycine and glycyl dipeptide in aqueous 1-butyl-3-methylimidazolium bromide ionic liquid solutions at different temperatures. J. Mol. Liq. 233, 38–44 (2017)

    Article  CAS  Google Scholar 

  40. Hepler, L.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The project was financially supported by the National Natural Science Foundation of China (No. 21573199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Shen, S., Ma, L. et al. Interaction Between an Active Pharmaceutical Ingredient Ionic Liquid Benzalkonium Salicylate and Small Biomolecules in Aqueous Solution: UV Absorption, Conductivity, and Volumetric Study. J Solution Chem 47, 1514–1528 (2018). https://doi.org/10.1007/s10953-018-0810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-018-0810-4

Keywords

Navigation