Skip to main content
Log in

Unraveling the Molecular Interactions of Imidazolium-Based Surface-Active Ionic Liquid [C15mim][Br] with Biologically Active Amino Acids Glycine, l-Alanine, l-Valine

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molecular interactions present between 1-pentadecyl-3-methylimidazolium bromide and the biologically important amino acid additives (glycine, l-alanine, and l-valine) have been examined in aqueous media by employing conductivity, UV–Visible, refractive index, and FT-IR spectroscopy at different compositions and temperatures. Furthermore, using the electrical conductivity data, critical micelle concentration, degree of counter-ion dissociation, and various thermodynamic parameters of micellization have been computed. To study the interactions in the micellar system, the effects of additives on these parameters have been carefully analyzed. UV–Visible and refractive index are carried out to outline the results stated above, along with FT-IR results to confirm the various interactions prevailing in the system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horbett, T.A., Brash, J.L.: Proteins at interfaces: an overview. J. Dispers. Sci. Technol. 18, 557–557 (1997). https://doi.org/10.1080/01932699708943757

    Article  Google Scholar 

  2. Chauhan, M.S., Kumari, N., Pathania, S., Sharma, K., Kumar, G.: A conductometric study of interactions between gelatin and sodium dodecyl sulfate (SDS) in aqueous-rich mixtures of dimethylsulfoxide. Colloids Surf. A Physicochem. Eng. Asp. 293, 157–161 (2007). https://doi.org/10.1016/j.colsurfa.2006.07.020

    Article  CAS  Google Scholar 

  3. Sharma, K., Chauhan, S.: Effect of biologically active amino acids on the surface activity and micellar properties of industrially important ionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 453, 78–85 (2014). https://doi.org/10.1016/j.colsurfa.2014.04.003

    Article  CAS  Google Scholar 

  4. Cid, A., Morales, J., Mejuto, J.C., Briz-Cid, N., Rial-Otero, R., Simal-Gándara, J.: Thermodynamics of sodium dodecyl sulphate-salicylic acid based micellar systems and their potential use in fruits postharvest. Food Chem. 151, 358–363 (2014). https://doi.org/10.1016/j.foodchem.2013.11.076

    Article  CAS  PubMed  Google Scholar 

  5. Cid, A., Mejuto, J.C., Orellana, P.G., López-Fernández, O., Rial-Otero, R., Simal-Gandara, J.: Effects of ascorbic acid on the microstructure and properties of SDS micellar aggregates for potential food applications. Food Res. Int. 50, 143–148 (2013). https://doi.org/10.1016/j.foodres.2012.10.009

    Article  CAS  Google Scholar 

  6. Mittal, H., Morajkar, P.P., Al Alili, A., Alhassan, S.M.: In-situ synthesis of ZnO Nanoparticles using gum Arabic based hydrogels as a self-template for effective malachite green dye adsorption. J. Polym. Environ. 28, 1637–1653 (2020). https://doi.org/10.1007/s10924-020-01713-y

    Article  CAS  Google Scholar 

  7. Mittal, H., Al Alili, A., Alhassan, S.M.: High efficiency removal of methylene blue dye using κ-carrageenan-poly(acrylamide-co-methacrylic acid)/AQSOA-Z05 zeolite hydrogel composites. Cellulose 27, 8269–8285 (2020). https://doi.org/10.1007/s10570-020-03365-6

    Article  CAS  Google Scholar 

  8. Bhardwaj, T., Bhardwaj, V., Sharma, K., Gupta, A., Cameotra, S.S., Sharma, P.: Thermo-acoustical analysis of sodium dodecyl sulfate: Fluconazole (antifungal drug) based micellar system in hydro-ethanol solutions for potential drug topical application. J. Chem. Thermodyn. 78, 1–6 (2014). https://doi.org/10.1016/j.jct.2014.06.003

    Article  CAS  Google Scholar 

  9. Madaeni, S.S., Rostami, E.: Spectroscopic investigation of the interaction of BSA with cationic surfactants. Chem. Eng. Technol. 31, 1265–1271 (2008). https://doi.org/10.1002/ceat.200700496

    Article  CAS  Google Scholar 

  10. Bhardwaj, V., Bhardwaj, T., Sharma, K., Gupta, A., Chauhan, S., Cameotra, S.S., Sharma, S., Gupta, R., Sharma, P.: Drug-surfactant interaction: thermo-acoustic investigation of sodium dodecyl sulfate and antimicrobial drug (levofloxacin) for potential pharmaceutical application. RSC Adv. 4, 24935–24943 (2014). https://doi.org/10.1039/c4ra02177k

    Article  CAS  Google Scholar 

  11. Mittal, H., Al Alili, A., Alhassan, S.M.: Solid polymer desiccants based on poly(acrylic acid-co-acrylamide) and Laponite RD: adsorption isotherm and kinetics studies. Colloids Surf. A Physicochem. Eng. Asp. 599, 124813 (2020). https://doi.org/10.1016/j.colsurfa.2020.124813

    Article  CAS  Google Scholar 

  12. Gunnarsson, G., Jönsson, B., Wennerström, H.: Surfactant association into micelles. An Electrost. Approach. J. Phys. Chem. 84, 3114–3121 (1980). https://doi.org/10.1021/j100460a029

    Article  CAS  Google Scholar 

  13. Kudryashov, E., Kapustina, T., Morrissey, S., Buckin, V., Dawson, K.: The compressibility of alkyltrimethylammonium bromide micelles. J. Colloid Interface Sci. 68, 59–68 (1998)

    Article  Google Scholar 

  14. Abdelhamid, H.N.: Organic matrices, ionic liquids, and organic matrices@nanoparticles assisted laser desorption/ionization mass spectrometry. TrAC Trends Anal. Chem. 89, 68–98 (2017). https://doi.org/10.1016/j.trac.2017.01.012

    Article  CAS  Google Scholar 

  15. Ventura, S.P.M., Gonçalves, A.M.M., Sintra, T., Pereira, J.L., Gonçalves, F., Coutinho, J.A.P.: Designing ionic liquids: The chemical structure role in the toxicity. Ecotoxicology 22, 1–12 (2013). https://doi.org/10.1007/s10646-012-0997-x

    Article  CAS  PubMed  Google Scholar 

  16. Abdelhamid, H.N.: Ionic liquids for mass spectrometry: matrices, separation and microextraction. TrAC Trends Anal. Chem. 77, 122–138 (2016). https://doi.org/10.1016/j.trac.2015.12.007

    Article  CAS  Google Scholar 

  17. Bhaisare, M.L., Abdelhamid, H.N., Wu, B.S., Wu, H.F.: Rapid and direct MALDI-MS identification of pathogenic bacteria from blood using ionic liquid-modified magnetic nanoparticles (Fe3O4@SiO2). J. Mater. Chem. B. 2, 4671–4683 (2014). https://doi.org/10.1039/c4tb00528g

    Article  CAS  PubMed  Google Scholar 

  18. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilibria 219, 93–98 (2004). https://doi.org/10.1016/j.fluid.2004.02.003

    Article  CAS  Google Scholar 

  19. Sheldon, R.: Catalytic reactions in ionic liquids. Chem. Commun. 1, 2399–2407 (2001). https://doi.org/10.1039/b107270f

    Article  CAS  Google Scholar 

  20. Abdelhamid, H.N.: Ionic liquids for nanomaterials recycling. Nanomater. Recycl. (2022). https://doi.org/10.1016/B978-0-323-90982-2.00024-X

    Article  Google Scholar 

  21. Miskolczy, Z., Sebök-Nagy, K., Biczók, L., Göktürk, S.: Aggregation and micelle formation of ionic liquids in aqueous solution. Chem. Phys. Lett. 400, 296–300 (2004). https://doi.org/10.1016/j.cplett.2004.10.127

    Article  CAS  Google Scholar 

  22. Geng, F., Liu, J., Zheng, L., Yu, L., Li, Z., Li, G., Tung, C.: Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry. J. Chem. Eng. Data. 55, 147–151 (2010). https://doi.org/10.1021/je900290w

    Article  CAS  Google Scholar 

  23. Galgano, P.D., El Seoud, O.A.: Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants. J. Colloid Interface Sci. 345, 1–11 (2010). https://doi.org/10.1016/j.jcis.2010.01.078

    Article  CAS  PubMed  Google Scholar 

  24. Mittal, H., Al Alili, A., Morajkar, P.P., Alhassan, S.M.: GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose —a versatile adsorbent for the treatment of dyes contaminated wastewater. Int. J. Biol. Macromol. 167, 1248–1261 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.079

    Article  CAS  PubMed  Google Scholar 

  25. Mittal, H., Al Alili, A., Alhassan, S.M.: Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater. 299, 110106 (2020). https://doi.org/10.1016/j.micromeso.2020.110106

    Article  CAS  Google Scholar 

  26. Zhao, Y., Chen, X., Jing, B., Wang, X., Ma, F.: Novel gel phase formed by mixing a cationic surfactive ionic liquid C 16mimCl and an anionic surfactant SDS in aqueous solution. J. Phys. Chem. B. 113, 983–988 (2009). https://doi.org/10.1021/jp809048u

    Article  CAS  PubMed  Google Scholar 

  27. Singh, W.P., Koch, U., Singh, R.S.: Gelation of ionic liquids by small-molecule gelators and their applications. Soft Mater. 18, 386–410 (2020). https://doi.org/10.1080/1539445X.2019.1697706

    Article  CAS  Google Scholar 

  28. Zhang, J., Shen, X.: Temperature-induced reversible transition between vesicle and supramolecular hydrogel in the aqueous ionic liquid-β-cyclodextrin system. J. Phys. Chem. B. 117, 1451–1457 (2013). https://doi.org/10.1021/jp308877w

    Article  CAS  PubMed  Google Scholar 

  29. Yuan, J., Bai, X., Zhao, M., Zheng, L.: C12mim Br ionic liquid/SDS vesicle formation and use as template for the synthesis of hollow silica spheres. Langmuir 26, 11726–11731 (2010). https://doi.org/10.1021/la101221z

    Article  CAS  PubMed  Google Scholar 

  30. Gayet, F., Marty, J.D., Brûlet, A., Viguerie, N.L.D.: Vesicles in ionic liquids. Langmuir 27, 9706–9710 (2011). https://doi.org/10.1021/la2015989

    Article  CAS  PubMed  Google Scholar 

  31. Rao, K.S., Kumar, A.: Vesicles and reverse vesicles of an ionic liquid in ionic liquids. Chem. Commun. 49, 8111–8113 (2013). https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  32. Zhao, Y., Chen, X., Wang, X.: Liquid crystalline phases self-organized from a surfactant-like ionic liquid C16mimCl in ethylammonium nitrate. J. Phys. Chem. B. 113, 2024–2030 (2009). https://doi.org/10.1021/jp810613c

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, G., Chen, X., Xie, Y., Zhao, Y., Qiu, H.: Lyotropic liquid crystalline phases in a ternary system of 1-hexadecyl-3-methylimidazolium chloride/1-decanol/water. J. Colloid Interface Sci. 315, 601–606 (2007). https://doi.org/10.1016/j.jcis.2007.07.012

    Article  CAS  PubMed  Google Scholar 

  34. Song, Z., Xin, X., Shen, J., Jiao, J., Xia, C., Wang, S., Yang, Y.: Manipulation of lyotropic liquid crystal behavior of ionic liquid-type imidazolium surfactant by amino acids. Colloids Surf. A Physicochem. Eng. Asp. 518, 7–14 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.004

    Article  CAS  Google Scholar 

  35. Mittal, H., Al Alili, A., Morajkar, P.P., Alhassan, S.M.: Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. J. Mol. Liq. 323, 115034 (2021). https://doi.org/10.1016/j.molliq.2020.115034

    Article  CAS  Google Scholar 

  36. Dixit, S.B., Bhasin, R., Rajasekaran, E., Jayaram, B.: Solvation thermodynamics of amino acids assessment of the electrostatic contribution and force-field dependence. J. Chem. Soc. Faraday Trans. 93, 1105–1113 (1997). https://doi.org/10.1039/a603913h

    Article  CAS  Google Scholar 

  37. Nelson, D.L., Cox, M.C., Freeman, W.H.: Lehninger: Principles of Biochemistry. Worth Publishers, USA (2004)

    Google Scholar 

  38. Kumar, H., Kaur, G.: Effect of changing alkyl chain in imidazolium based ionic liquid on the micellization behavior of anionic surfactant sodium hexadecyl sulfate in aqueous media. J. Dispers. Sci. Technol. (2020). https://doi.org/10.1080/01932691.2020.1724796

    Article  Google Scholar 

  39. Ebrahimi, M., Moosavi, F.: The effects of temperature, alkyl chain length, and anion type on thermophysical properties of the imidazolium based amino acid ionic liquids. J. Mol. Liq. 250, 121–130 (2018). https://doi.org/10.1016/j.molliq.2017.11.122

    Article  CAS  Google Scholar 

  40. Hu, Y., Han, J., Guo, R.: Influence of the alkyl chain length of the imidazole ionic liquid-type surfactants on their aggregation behavior with sodium dodecyl sulfate. Langmuir 36, 10494–10503 (2020). https://doi.org/10.1021/acs.langmuir.0c01673

    Article  CAS  PubMed  Google Scholar 

  41. Mozrzymas, A.: On the head group effect on critical micelle concentration of cationic surfactants using molecular connectivity indices and atomic partial charges. J. Solution Chem. 48, 875–890 (2019). https://doi.org/10.1007/s10953-019-00887-x

    Article  CAS  Google Scholar 

  42. Buckingham, S.A., Garvey, C.J., Warr, G.G.: Effect of head-group size on micellization and phase behavior in quaternary ammonium surfactant systems. J. Phys. Chem. 97, 10236–10244 (1993). https://doi.org/10.1021/j100141a054

    Article  CAS  Google Scholar 

  43. Long, P., Chen, J., Wang, D., Hu, Z., Gao, X., Li, Z., Hao, J.: Influence of counterions on micellization of tetramethylammonium perfluorononanoic carboxylate in 1-butyl-3-methylimidazolium ionic liquid. J. Phys. Chem. B. 116, 7669–7675 (2012). https://doi.org/10.1021/jp300733x

    Article  CAS  PubMed  Google Scholar 

  44. Naskar, B., Dey, A., Moulik, S.P.: Counter-ion effect on micellization of ionic surfactants: a comprehensive understanding with two representatives, sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). J. Surfact. Deterg. 16, 785–794 (2013). https://doi.org/10.1007/s11743-013-1449-1

    Article  CAS  Google Scholar 

  45. Kumar, H., Kaur, R.: Exploration of the soluting-out effect of carbohydrates on the micellization and surface activity of long-chain imidazolium ionic liquid in the aqueous medium. J. Mol. Liq. 319, 114209 (2020). https://doi.org/10.1016/j.molliq.2020.114209

    Article  CAS  Google Scholar 

  46. Kumar, H., Kaur, R.: Studies on thermodynamics of micellization of imidazolium-based surface-active ionic liquid [C15mim][Br] in aqueous media: effect of D(+)-Xylose and D(+)-Glucose. J. Mol. Liq. 344, 117645 (2021). https://doi.org/10.1016/j.molliq.2021.117645

    Article  CAS  Google Scholar 

  47. Arakawa, T., Tsumoto, K., Kita, Y., Chang, B., Ejima, D.: Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 33, 587–605 (2007). https://doi.org/10.1007/S00726-007-0506-3

    Article  CAS  PubMed  Google Scholar 

  48. Chiang, C.-H., Yeh, M.-K.: Contribution of poly(amino acids) to advances in pharmaceutical biotechnology. Curr. Pharm. Biotechnol. 4, 323–330 (2005). https://doi.org/10.2174/1389201033489739

    Article  Google Scholar 

  49. Rather, M.A., Rather, G.M., Pandit, S.A., Bhat, S.A., Bhat, M.A.: Determination of cmc of imidazolium based surface active ionic liquids through probe-less UV–vis spectrophotometry. Talanta 131, 55–58 (2015). https://doi.org/10.1016/j.talanta.2014.07.046

    Article  CAS  PubMed  Google Scholar 

  50. Bhat, M.A., Dutta, C.K., Rather, G.M.: Exploring physicochemical aspects of N-alkylimidazolium based ionic liquids. J. Mol. Liq. 181, 142–151 (2013). https://doi.org/10.1016/j.molliq.2013.02.021

    Article  CAS  Google Scholar 

  51. Garcia, M.T., Ribosa, I., Perez, L., Manresa, A., Comelles, F.: Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution. Langmuir 29, 2536–2545 (2013). https://doi.org/10.1021/la304752e

    Article  CAS  PubMed  Google Scholar 

  52. Aggarwal, R., Singh, S., Hundal, G.: Synthesis, characterization, and evaluation of surface properties of cyclohexanoxycarbonylmethylpyridinium and cyclohexanoxycarbonylmethylimidazolium ionic liquids. Ind. Eng. Chem. Res. 52, 1179–1189 (2013). https://doi.org/10.1021/ie3020473

    Article  CAS  Google Scholar 

  53. Vanyúr, R., Biczók, L., Miskolczy, Z.: Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 299, 256–261 (2007). https://doi.org/10.1016/j.colsurfa.2006.11.049

    Article  CAS  Google Scholar 

  54. Shanks, P.C., Franses, E.I.: Estimation of micellization parameters of aqueous sodium dodecyl sulfate from conductivity data. J. Phys. Chem. 96, 1794–1805 (1992). https://doi.org/10.1021/j100183a055

    Article  CAS  Google Scholar 

  55. Kumar, H., Sharma, P.: Investigations on the micellization behavior and thermodynamic characteristics of synthesized surface active ionic liquids [C14mim] [Br] and [C15mim] [Br] in the presence of oral antidiabetic drug metformin hydrochloride. J. Mol. Liq. 322, 114851 (2021). https://doi.org/10.1016/j.molliq.2020.114851

    Article  CAS  Google Scholar 

  56. Ahmad Sajid, T., Jamal, M.A., Saeed, M., Atta-ul-Haq, M., Muneer, M.: Elucidation of molecular interactions between amino acid and imidazolium based ionic liquid in an aqueous system: Volumetric and acoustic studies. J. Mol. Liq. 335, 116513 (2021). https://doi.org/10.1016/j.molliq.2021.116513

    Article  CAS  Google Scholar 

  57. Yan, Z., Geng, R., Gu, B., Pan, Q., Wang, J.: Densities, electrical conductances, and spectroscopic properties of glycyl dipeptide+ionic liquid ([C12mim]Br)+water mixtures at different temperatures. Fluid Phase Equilib. 367, 125–134 (2014). https://doi.org/10.1016/j.fluid.2014.01.038

    Article  CAS  Google Scholar 

  58. Wang, H., Feng, Q., Wang, J., Zhang, H.: Salt effect on the aggregation behavior of 1-Decyl-3-methylimidazolium bromide in aqueous solutions. J. Phys. Chem. B. 114, 1380–1387 (2010). https://doi.org/10.1021/jp910903s

    Article  CAS  PubMed  Google Scholar 

  59. Ali, A., Ansari, N.H.: Studies on the effect of amino acids/peptide on micellization of SDS at different temperatures. J. Surfact. Deterg. 13, 441–449 (2010). https://doi.org/10.1007/s11743-010-1221-8

    Article  CAS  Google Scholar 

  60. Rakshit, A.K., Sharma, B.: The effect of amino acids on the surface and the thermodynamic properties of poly[oxyethylene(10)] lauryl ether in aqueous solution. Colloid Polym. Sci. 281, 45–51 (2003). https://doi.org/10.1007/s00396-002-0743-7

    Article  CAS  Google Scholar 

  61. Hopp, T.P., Woods, K.R.: Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 78, 3824–3828 (1981). https://doi.org/10.1073/PNAS.78.6.3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982). https://doi.org/10.1016/0022-2836(82)90515-0

    Article  CAS  PubMed  Google Scholar 

  63. Browne, C.A., Bennett, H.P.J., Solomon, S.: The isolation of peptides by high-performance liquid chromatography using predicted elution positions. Anal. Biochem. 124, 201–208 (1982). https://doi.org/10.1016/0003-2697(82)90238-X

    Article  CAS  PubMed  Google Scholar 

  64. Bull, H.B., Breese, K.: Surface tension of amino acid solutions: a hydrophobicity scale of the amino acid residues. Arch. Biochem. Biophys. 161, 665–670 (1974). https://doi.org/10.1016/0003-9861(74)90352-X

    Article  CAS  PubMed  Google Scholar 

  65. Berggren, K., Wolf, A., Asenjo, J.A., Andrews, B.A., Tjerneld, F.: The surface exposed amino acid residues of monomeric proteins determine the partitioning in aqueous two-phase systems. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1596, 253–268 (2002). https://doi.org/10.1016/S0167-4838(02)00222-4

    Article  CAS  Google Scholar 

  66. Black, S.D., Mould, D.R.: Development of hydrophobicity parameters to analyze proteins which bear post- or cotranslational modifications. Anal. Biochem. 193, 72–82 (1991). https://doi.org/10.1016/0003-2697(91)90045-U

    Article  CAS  PubMed  Google Scholar 

  67. Bianco-Peled, H., Gryc, S.: Binding of amino acids to “smart” sorbents: where does hydrophobicity come into play? Langmuir 20, 169–174 (2004). https://doi.org/10.1021/la0357155

    Article  CAS  PubMed  Google Scholar 

  68. Zdziennicka, A., Szymczyk, K., Krawczyk, J., Jańczuk, B.: Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization. Fluid Phase Equilib. (2012). https://doi.org/10.1016/j.fluid.2012.03.018

    Article  Google Scholar 

  69. Ali, A., Malik, N.A., Uzair, S., Ali, M., Ahmad, M.F.: Hexadecyltrimethylammonium bromide micellization in glycine, diglycine, and triglycine aqueous solutions as a function of surfactant concentration and temperatures. Russ. J. Phys. Chem. A. 88, 1053–1061 (2014). https://doi.org/10.1134/S003602441406003X

    Article  CAS  Google Scholar 

  70. Adane, D.F.: Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1,2-ethanediol and 1,2,3-propanetriol with water. Int. J. Phys. Sci. 10, 276–288 (2015). https://doi.org/10.5897/ijps2015.4288

    Article  Google Scholar 

  71. Ali, A., Tasneem, S., Bidhuri, P., Bhushan, V., Malik, N.A.: Critical micelle concentration and self-aggregation of hexadecyltrimethylammonium bromide in aqueous glycine and glycylglycine solutions at different temperatures. Russ. J. Phys. Chem. A. 86, 1923–1929 (2012). https://doi.org/10.1134/S0036024412130031

    Article  CAS  Google Scholar 

  72. Alam, M., Robel, M., Rana, S., Abdul, M., Azum, N., Hoque, A., Kabir, S.E.: Aggregation behavior of cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide in aqueous/urea solution at different temperatures: experimental and theoretical investigation. J. Mol. Liq. 285, 766–777 (2019)

    Article  CAS  Google Scholar 

  73. Kumar, H., Kaur, J., Awasthi, P.: Scrutinizing the micellization behaviour of 14-2-14 gemini surfactant and tetradecyltrimethylammonium bromide in aqueous solutions of betaine hydrochloride drug. J. Mol. Liq. 338, 116642 (2021). https://doi.org/10.1016/j.molliq.2021.116642

    Article  CAS  Google Scholar 

  74. Alam, M., Rana, S., Abdul, M., Hoque, A., Kabir, S.E., Asiri, A.M.: Influence of various electrolytes on the interaction of cetyltrimethylammonium bromide with tetradecyltrimethylammonium bromide at different temperatures and compositions: experimental and theoretical investigation. J. Mol. Liq. 278, 86–96 (2019). https://doi.org/10.1016/j.molliq.2018.12.112

    Article  CAS  Google Scholar 

  75. Inoue, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314, 236–241 (2007). https://doi.org/10.1016/j.jcis.2007.05.052

    Article  CAS  PubMed  Google Scholar 

  76. Dong, B., Zhao, X., Zheng, L., Zhang, J., Li, N., Inoue, T.: Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf. A Physicochem. Eng. Asp. 317, 666–672 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.001

    Article  CAS  Google Scholar 

  77. Rojas, M., Miskolczy, Z., Biczók, L., Pavez, P.: Effect of amino acid addition on the micelle formation of the surface-active ionic liquid 1-tetradecyl-3-methylimidazolium bromide in aqueous solution. J. Phys. Org. Chem. 32, 1–9 (2019). https://doi.org/10.1002/poc.3814

    Article  CAS  Google Scholar 

  78. Baltazar, Q.Q., Chandawalla, J., Sawyer, K., Anderson, J.L.: Interfacial and micellar properties of imidazolium-based monocationic and dicationic ionic liquids. Colloids Surf. A Physicochem. Eng. Asp. 302, 150–156 (2007). https://doi.org/10.1016/j.colsurfa.2007.02.012

    Article  CAS  Google Scholar 

  79. Paul, A., Mandal, P.K., Samanta, A.: On the optical properties of the imidazolium ionic liquids. J. Phys. Chem. B. 109, 9148–9153 (2005). https://doi.org/10.1021/jp0503967

    Article  CAS  PubMed  Google Scholar 

  80. Ysambertt, F., Vejar, F., Paredes, J., Salager, J.L.: The absorbance deviation method: a spectrophotometric estimation of the critical micelle concentration (CMC) of ethoxylated alkylphenol surfactants. Colloids Surf. A Physicochem. Eng. Asp. 137, 189–196 (1998). https://doi.org/10.1016/S0927-7757(97)00203-3

    Article  CAS  Google Scholar 

  81. Paul, A., Mandal, P.K., Samanta, A.: How transparent are the imidazolium ionic liquids? A case study with 1-methyl-3-butylimidazolium hexafluorophosphate, [bmim][PF6]. Chem. Phys. Lett. 402, 375–379 (2005). https://doi.org/10.1016/j.cplett.2004.12.060

    Article  CAS  Google Scholar 

  82. Karimi, M.A., Mozaheb, M.A., Hatefi-mehrjardi, A., Tavallali, H.: A new simple method for determining the critical micelle concentration of surfactants using surface plasmon resonance of silver nanoparticles. J. Anal. Sci. Technol. 6, 1–8 (2015). https://doi.org/10.1186/s40543-015-0077-y

    Article  CAS  Google Scholar 

  83. Partington, J.R.: An advanced treatise on physical chemistry. Longmans, London (1951)

    Google Scholar 

  84. Batsanov, S.S.: Refractometry and chemical structure. Van Nostrand, Princeton (1966)

    Google Scholar 

  85. Desando, M.A.: Refractive index in relation to solvent effects on the amphiphilic association of n-alkylammonium carboxylates. Colloid Polym. Sci. 294, 1789–1805 (2016). https://doi.org/10.1007/s00396-016-3924-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors (H.K) are thankful to Science and Engineering Research Board (SERB), New Delhi for providing financial assistance to carry out research work vide sanction order number EMR/2015/002059. Ramanjeet Kaur is thankful to University Grants Commission (UGC), New Delhi for providing Junior Research Fellowship (JRF) (121213) vide letter UGC-Ref. no.: 131/(CSIR-UGC NET DEC. 2017). The authors are also thankful to DST, New Delhi for DST-FIST [CSI-228/2011] Program and The Director and Head, Department of Chemistry for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Kumar.

Ethics declarations

Conflicts of interests

Authors declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5273 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Kumar, H. & Singla, M. Unraveling the Molecular Interactions of Imidazolium-Based Surface-Active Ionic Liquid [C15mim][Br] with Biologically Active Amino Acids Glycine, l-Alanine, l-Valine. J Solution Chem 52, 838–858 (2023). https://doi.org/10.1007/s10953-023-01273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01273-4

Keywords

Navigation