Skip to main content
Log in

Interactional behavior of surface active ionic liquid lauryl isoquinolinium bromide and anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt in aqueous solution

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the present study, we have reported a detailed assessment of interactional behavior between the surface active ionic liquid (SAIL) lauryl isoquinolinium bromide ([C12iQuin][Br]) and anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSS-co-MA) in aqueous media. Various techniques such as surface tension, conductance, dynamic light scattering, and turbidity have been employed to get insight into interactions among [C12iQuin][Br] and polyelectrolyte in the interfacial region. Then, surface parameters such as surface excess concentration (Γcmc), surface pressure at interface (Πcmc), minimum area occupied by one molecule of SAIL at air–solvent interface (Αmin), adsorption efficiency (pC20), and surface tension at critical micelle concentration (cmc) (γcmc) have been calculated from tensiometric measurements. Further, thermodynamic parameters, i.e., standard enthalpy of micellization \( \left(\Delta {H}_{\mathrm{m}}^{{}^{\circ}}\right) \), standard free energy of micellization (\( \Delta {G}_{\mathrm{m}}^{{}^{\circ}} \)), and standard entropy of micellization (\( \Delta {S}_{\mathrm{m}}^{{}^{\circ}} \)) have been evaluated. The size and shape of complexes formed among [C12iQuin][Br] and polyelectrolyte have been characterized using DLS and turbidity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084. https://doi.org/10.1021/cr980032t

    Article  CAS  Google Scholar 

  2. Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102(10):3667–3692. https://doi.org/10.1021/cr010338r

    Article  CAS  Google Scholar 

  3. Wasserscheid P (2006) Chemistry: volatile times for ionic liquids. Nature 439(7078):797. https://doi.org/10.1038/439797a

    Article  CAS  Google Scholar 

  4. Seddon KR (2003) Ionic liquids: a taste of the future. Nature 2:36–365

    Google Scholar 

  5. Meli L, Lodge TP (2009) Equilibrium vs metastability: high-temperature annealing of spherical block copolymer micelles in an ionic liquid. Macromolecules 42(3):580–583. https://doi.org/10.1021/ma802020a

    Article  CAS  Google Scholar 

  6. Solinas M, Pfaltz A, Cozzi PG, Leitner W (2004) Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc 126(49):16142–16147. https://doi.org/10.1021/ja046129g

    Article  CAS  Google Scholar 

  7. Polymer-surfactant systems (1998) In: JCT K (ed) Surfactant science series. Marcel Dekker, New York

    Google Scholar 

  8. Benedek K, Thiede S (1994) High-performance capillary electrophoresis of proteins using sodium dodecyl sulfate-poly(ethylene oxide). J Chromatogr A 676(1):209–217. https://doi.org/10.1016/0021-9673(94)80462-1

    Article  CAS  Google Scholar 

  9. Tseng WL, Lin YW, Chang HT, Tseng WL, Lin YW, Chang HT (2002) Improved separation of microheterogeneities and isoforms of proteins by capillary electrophoresis using segmental filling with SDS and PEO in the background electrolyte. Anal Chem 74(18):4828–4834. https://doi.org/10.1021/ac020140m

    Article  CAS  Google Scholar 

  10. Yoshida K, Dubin PL (1999) Complex formation between polyacrylic acid and cationic/nonionic mixed micelles: effect of pH on electrostatic interaction and hydrogen bonding. Colloids Surf A Physicochem Eng Asp 147(1–2):161–167. https://doi.org/10.1016/S0927-7757(98)00747-X

    Article  CAS  Google Scholar 

  11. Goddard ED, Ananthapadmanabhan KP (1993) Eds. Interactions of surfactants with polymers and proteins. CRC Press Boca Raton FL Chapter 4

  12. Leonov AP, Zheng J, Clogston JD, Stern ST, Patri AK, Wei A (2008) Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2(12):2481–2488V. https://doi.org/10.1021/nn800466c

    Article  CAS  Google Scholar 

  13. Blesic M, Lopes A, Melo E, Petrovski Z, Plechkova NV, Canongia Lopes JN, Seddon KR, Rebelo LPN (2008) On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J Phys Chem B 112(29):8645–8650. https://doi.org/10.1021/jp802179j

    Article  CAS  Google Scholar 

  14. Cornellas A, Perez L, Comelles F, Ribosa I, Manresa A, Teresa Garcia M (2011) Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J Colloid Interface Sci 355(1):164–171. https://doi.org/10.1016/j.jcis.2010.11.063

    Article  CAS  Google Scholar 

  15. Garcia TM, Ribosa I, Perez L, Manresa A, Comelles F (2013) Aggregation behavior and antimicrobial activity of ester-functionalized imidazolium- and pyridinium-based ionic liquids in aqueous solution. Langmuir 29(8):2536–2545. https://doi.org/10.1021/la304752e

    Article  CAS  Google Scholar 

  16. Garcia MT, Ribosaa I, Perez L, Manresa A, Comelles F (2014) Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf B Biointerfaces 123:318–325. https://doi.org/10.1016/j.colsurfb.2014.09.033

    Article  CAS  Google Scholar 

  17. Sharma R, Kamal A, Kang TS, Mahajan RK (2015) Interactional behavior of polyelectrolyte poly sodium 4-styrene sulphonate (NaPSS) with imidazolium based surface active ionic liquids in aqueous medium. Phys Chem Chem Phys 17(36):23582–23594. https://doi.org/10.1039/C5CP02642C

    Article  CAS  Google Scholar 

  18. Pal A, Yadav S (2016) Binding interaction between 1-octyl-3-methylimidazolium bromide and sodium polystyrene sulfonate in aqueous solution. Fluid Phase Equilib 412:71–78. https://doi.org/10.1016/j.fluid.2015.12.034

    Article  CAS  Google Scholar 

  19. Zhang Q, Kang W, Sun D, Liu J, Wei X (2013) Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate. Appl Surf Sci 279:353–359. https://doi.org/10.1016/j.apsusc.2013.04.105

    Article  CAS  Google Scholar 

  20. Liu J, Zheng L, Sun D, Wei X (2010) Salt effect on the complex formation between 1-dodecyl-3-methylimidazolium bromide and sodium carboxymethylcellulose in aqueous solution. Colloids Surf A Physicochem Eng Asp 358(1-3):93–100. https://doi.org/10.1016/j.colsurfa.2010.01.034

    Article  CAS  Google Scholar 

  21. Bandres I, Meler S, Giner B, Cea P, Lafuente C (2009) Aggregation behavior of pyridinium-based ionic liquids in aqueous solution. J Solut Chem 38(12):1622–1634. https://doi.org/10.1007/s10953-009-9474-4

    Article  CAS  Google Scholar 

  22. Jiang Z, Li XF, Yang GF, Cheng L, Cai B, Yang Y, Dong J (2012) pH-responsive surface activity and solubilization with novel pyrrolidone-based Gemini surfactants. Langmuir 28(18):7174–7181. https://doi.org/10.1021/la3008156

    Article  CAS  Google Scholar 

  23. Sastry NV, Vaghela NM, Macwan PM, Soni SS, Aswal VK, Gibaud A (2012) Aggregation behavior of pyridinium based ionic liquids in water–surface tension, 1H NMR chemical shifts, SANS and SAXS measurements. J Colloid Interface Sci 371(1):52–61. https://doi.org/10.1016/j.jcis.2011.12.077

    Article  CAS  Google Scholar 

  24. Dabholkar VV, Tripathi DR (2011) Synthesis and antibacterial activity of isochromene and isoquinoline derivative. J Heterocycl Chem 48(3):529–532. https://doi.org/10.1002/jhet.245

    Article  CAS  Google Scholar 

  25. Lava K, Evrard Y, Hecke KV, Meervel LV, Binnemans K (2012) Quinolinium and isoquinolinium ionic liquid crystals. RSC Adv 2(21):8061–8070. https://doi.org/10.1039/c2ra21208k

    Article  CAS  Google Scholar 

  26. Visser AE, Holbrey JD, Rogers RD (2001) Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid–liquid separations. Chem Commun 23:2484–2485

    Article  Google Scholar 

  27. Domańska U, Zawadzki M, Paduszyński K, Królikowski M (2012) Perturbed-chain SAFT as a versatile tool for thermodynamic modeling of binary mixtures containing isoquinolinium ionic liquids. J Phys Chem B 116(28):8191–8200. https://doi.org/10.1021/jp303988k

    Article  Google Scholar 

  28. Domańska U, Zawadzki M, Lewandrowska A (2012) Effect of temperature and composition on the density, viscosity, surface tension, and thermodynamic properties of binary mixtures of N-octylisoquinoliniumbis{(trifluoromethyl)sulfonyl}imide with alcohols. J Chem Thermodyn 48:101–111. https://doi.org/10.1016/j.jct.2011.12.003

    Article  Google Scholar 

  29. Domańska U, Zawadzki M, Królikowska M, Tshibangu MM, Ramjugernath D, Letcher TM (2011) Measurements of activity coefficients at infinite dilution of organic compounds and water in isoquinolinium-based ionic liquid [C8iQuin][NTf2] using GLC. J Chem Thermodyn 43(3):499–504. https://doi.org/10.1016/j.jct.2010.10.026

    Article  Google Scholar 

  30. Domańska U, Zawadzki M, Królikowski M, Lewandrowska A (2012) Phase equilibria study of binary and ternary mixtures of {Noctylisoquinoliniumbis{(trifluoromethyl)sulfonyl}imide + hydrocarbon, or an alcohol, r water}. J Chem Thermodyn 181:63–71

    Google Scholar 

  31. Zhang X, Peng X, Ge L, Yu L, Liu Z, Guo R (2014) Micellization behavior of the ionic liquid lauryl isoquinolinium bromide in aqueous solution. Colloid Polym Sci 292(5):1111–1120. https://doi.org/10.1007/s00396-013-3151-2

    Article  CAS  Google Scholar 

  32. Bakshi MS, Sachar S (2004) Surfactant polymer interactions between strongly interacting cationic surfactants and anionic polyelectrolytes from conductivity and turbidity measurements. Colloid Polym Sci 282(9):993–999. https://doi.org/10.1007/s00396-003-1022-y

    Article  CAS  Google Scholar 

  33. Touhami Y, Rana D, Neale GH, Hornof V (2001) Study of polymer-surfactant interactions via surface tension measurements. Colloid Polym Sci 279(3):297–300. https://doi.org/10.1007/s003960000455

    Article  CAS  Google Scholar 

  34. Staples E, Tucker I, Penfold J, Warren N, Thomas RK (2002) Organization of polymer−surfactant mixtures at the air−water interface: poly(dimethyldiallylammonium chloride), sodium dodecyl sulfate, and hexaethylene glycol monododecyl ether. Langmuir 18(13):5139–5146. https://doi.org/10.1021/la011863o

    Article  CAS  Google Scholar 

  35. Goddard ED (2002) Polymer/surfactant interaction: interfacial aspects. J Colloid Interface Sci 256(1):228–235. https://doi.org/10.1006/jcis.2001.8066

    Article  CAS  Google Scholar 

  36. Cervantes-Martínez A, Maldonado A (2007) Foaming behaviour of polymer–surfactant solutions. J Phys Condens Matter 19(24):246101–246107. https://doi.org/10.1088/0953-8984/19/24/246101

    Article  Google Scholar 

  37. Pandey S, Bagwe RP, Shah DO (2003) Effect of counterions on surface and foaming properties of dodecyl sulfate. J Colloid Interface Sci 267(1):160–166. https://doi.org/10.1016/j.jcis.2003.06.001

    Article  CAS  Google Scholar 

  38. Dong B, Zhao X, Zheng L, Zhang J, Li N, Inoue T (2008) Aggregation behavior of long-chain imidazolium ionic liquids in aqueous solution: micellization and characterization of micelle microenvironment. Colloids Surf A Physicochem Eng Asp 317(1-3):666–672. https://doi.org/10.1016/j.colsurfa.2007.12.001

    Article  CAS  Google Scholar 

  39. Moroi Y (1992) Micelles: theoretical and applied aspects. Plenum Press, New York. https://doi.org/10.1007/978-1-4899-0700-4

    Book  Google Scholar 

  40. Pal A, Yadav A (2015) Modulations in the aggregation behavior of ionic liquid 1-butyl-3-methylimidazolium octylsulfate in aqueous alcohol solutions. J Mol Liq 212:569–575. https://doi.org/10.1016/j.molliq.2015.10.009

    Article  CAS  Google Scholar 

  41. Inoue T, Ebina H, Dong B, Zheng L (2007) Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J Colloid Interface Sci 314(1):236–241. https://doi.org/10.1016/j.jcis.2007.05.052

    Article  CAS  Google Scholar 

  42. Wang J, Wang H, Zhang S, Zhang H, Zhao Y (2007) Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J Phys Chem B 111(22):6181–6188. https://doi.org/10.1021/jp068798h

    Article  CAS  Google Scholar 

  43. Wang J, Zhang L, Wang H, Wu C (2011) Aggregation behavior modulation of 1-dodecyl-3-methylimidazolium bromide by organic solvents in aqueous solution. J Phys Chem B 115(17):4955–4962. https://doi.org/10.1021/jp201604u

    Article  CAS  Google Scholar 

  44. Singh T, Kumar A (2008) Self-aggregation of ionic liquids in aqueous media: a thermodynamic study. Colloids Surf A Physicochem Eng Asp 318(1-3):263–268. https://doi.org/10.1016/j.colsurfa.2007.12.043

    Article  CAS  Google Scholar 

  45. Chen LG, Bermudez H (2012) Solubility and aggregation of charged surfactants in ionic liquids. Langmuir 28(2):1157–1162. https://doi.org/10.1021/la2040399

    Article  CAS  Google Scholar 

  46. Rosen MJ (1988) Surfactant and interfacial phenomenon2nd edn. Wiley, New York

    Google Scholar 

  47. Tardani F, Mesa CL (2015) Titration of DNA/carbon nanotube complexes with double-chained oppositely charged surfactants. Nanomaterials (Basel) 5(2):722–736. https://doi.org/10.3390/nano5020722

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Mr. Praveen Singh Gehlot, Research Scholar at CSIR-CSMCRI, Bhavnagar for assisting in experimental measurements.

Funding

This study was funded by Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 21(1005)/15/EMR-II) through Emeritus Scientist grant to Prof. A. Pal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Pal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Maan, R. Interactional behavior of surface active ionic liquid lauryl isoquinolinium bromide and anionic polyelectrolyte poly(4-styrenesulfonic acid-co-maleic acid) sodium salt in aqueous solution. Colloid Polym Sci 296, 483–494 (2018). https://doi.org/10.1007/s00396-018-4263-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4263-5

Keywords

Navigation