Skip to main content

Advertisement

Log in

Critical Evaluation of the Standard Molar Entropies, Enthalpies of Formation, Gibbs Energies of Formation and Heat Capacities of the Aqueous Trivalent Rare Earth Ions, and the Corresponding Standard Molar Entropies, Enthalpies of Formation and Gibbs Energies of Formation of the Thermodynamically Stable RECl3·7H2O(cr) and RECl3·6H2O(cr)

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In an earlier evaluation (F.H. Spedding, J.A. Rard, A. Habenschuss, J. Phys. Chem. 81: 1069–1074, 1977) the standard molar entropies of the aqueous trivalent rare earth ions RE3+(aq) were calculated based on the standard molar entropies of the hydrated rare earth chlorides RECl3·7H2O(cr) (RE = La, Pr) and RECl3·6H2O(cr) (RE = Nd, Gd, Tb, Dy, Ho, Er, Lu) at T = 298.15 K and p = 0.1 MPa, along with their corresponding standard molar enthalpies and Gibbs energies of solution, which are known for nearly all of the RECl3·7H2O(cr) and RECl3·6H2O(cr) including YCl3·6H2O(cr). However, the entropies of these RECl3·7H2O(cr) and of several of the RECl3·6H2O(cr) have large uncertainties because the source heat capacities only extend up to T = 223–262 K and not to T = 298.15 K and the crystals used for these measurements contained some occluded solution (water excess). Simple methods are described to correct these entropies of the RECl3·7H2O(cr) and RECl3·6H2O(cr) and to estimate the standard molar entropies of the RECl3·6H2O(cr) from those of the corresponding anhydrous RECl3(cr). By using these entropies, standard molar enthalpies of solution and revised results for the standard molar Gibbs energy changes to form the saturated solutions, revised and CODATA-compatible values of the standard molar entropies of the RE3+(aq), \( S_{\text{m}}^{\text{o}} ({\text{RE}}^{3 + } ,\,\,{\text{aq}},\,\,298.15\,\,{\text{K}}) \) where RE = (La, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y), were evaluated or estimated (RE = Pm). By combining these results with critically-assessed standard molar enthalpies of formation of the RE3+(aq), the standard molar Gibbs energies of formation of these trivalent rare earth aquo ions were calculated, as were the corresponding standard molar Gibbs energies and enthalpies of formation of the thermodynamically stable RECl3·7H2O(cr) and RECl3·6H2O(cr) phases at T = 298.15 K and p = 0.1 MPa. In addition, standard molar heat capacities of most of the RE3+(aq) were evaluated from published results for dilute solutions from flow microcalorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bertha, S.L., Choppin, G.R.: Hydration thermodynamics of the lanthanide ions. Inorg. Chem. 8, 613–617 (1969)

    Article  CAS  Google Scholar 

  2. Coulter, L.V., Latimer, W.M.: The heat of solution of gadolinium sulfate octahydrate and the entropy of gadolinium ion. J. Am. Chem. Soc. 62, 2557–2558 (1940)

    Article  CAS  Google Scholar 

  3. Hinchey, R.J., Cobble, J.W.: Standard-state entropies for the aqueous trivalent lanthanide and yttrium ions. Inorg. Chem. 9, 917–921 (1970)

    Article  CAS  Google Scholar 

  4. Spedding, F.H., Rard, J.A., Habenschuss, A.: Standard state entropies of the aqueous rare earth ions. J. Phys. Chem. 81, 1069–1074 (1977)

    Article  CAS  Google Scholar 

  5. Hellwege, K.H., Johnsen, U., Pfeffer, W.: Spezifische Wärmen von PrCl3·nH2O und LaCl3·nH2O im Temperaturbereich zwischen 4,8 °K und 260 °K. Z. Physik 154, 301–309 (1959)

    Article  CAS  Google Scholar 

  6. Hellwege, K.H., Küch, F., Niemann, K., Pfeffer, W.: Spezifische Wärmen von GdCl3·6H2O im Temperaturbereich zwischen 1,1 °K und 260 °K. Z. Physik 162, 358–362 (1961)

    Article  CAS  Google Scholar 

  7. Pfeffer, W.: Spezifische Wärmen von HoCl3·6H2O und ErCl3·6H2O im Temperaturbereich zwischen 1,2 °K und 230 °K. Z. Physik 162, 413–420 (1961)

    Article  CAS  Google Scholar 

  8. Pfeffer, W.: Spezifische Wärmen von DyCl3·6H2O und NdCl3·6H2O im Temperaturbereich zwischen 1,2 °K und 220 °K. Z. Physik 164, 295–302 (1961)

    Article  CAS  Google Scholar 

  9. Pfeffer, W.: Spezifische Wärme von LuCl3·6H2O zwischen 1,4 °K und 220 °K. — Höhere Grundtermkomponenten von Ho-, Er- und Nd-Chlorid. Z. Physik 168, 305–315 (1962)

    Article  CAS  Google Scholar 

  10. Schumm, R.H.: Personal communication to J. A. Rard, 31 August 1976 (available in electronic supplementary material)

  11. Spedding, F.H., Rulf, D.C., Gerstein, B.C.: Thermal study of entropies and crystal field splittings in heavy rare earth trichloride hexahydrates. Heat capacities from 5–300 °K. J. Chem. Phys. 56, 1498–1506 (1972)

    Article  CAS  Google Scholar 

  12. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11(Supplement 2), 2-1–2-392 (1982)

    Google Scholar 

  13. Spedding, F.H., Weber, H.O., Saeger, V.W., Petheram, H.H., Rard, J.A., Habenschuss, A.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 1. The rare earth chlorides. J. Chem. Eng. Data 21, 341–360 (1976)

    Article  CAS  Google Scholar 

  14. Morss, L.R.: Yttrium, Lanthanum, and the Lanthanide Elements. In: Bard, A.J., Parsons, R., Jordan, J. (eds.) Standard Potentials in Aqueous Solution, pp. 587–629. Marcel Dekker Inc, New York (1985)

    Google Scholar 

  15. Mioduski, T., Gumiński, C., Zeng, D.: IUPAC-NIST solubility data series. 87. Rare earth metal chlorides in water and aqueous systems. Part 1. Scandium group (Sc, Y, La). J. Phys. Chem. Ref. Data 37, 1765–1853 (2008)

    Article  CAS  Google Scholar 

  16. Mioduski, T., Gumiński, C., Zeng, D.: IUPAC-NIST solubility data series. 87. Rare earth metal chlorides in water and aqueous systems. Part 2. Light lanthanides (Ce–Eu). J. Phys. Chem. Ref. Data 38, 441–562 (2009)

    Article  CAS  Google Scholar 

  17. Mioduski, T., Gumiński, C., Zeng, D.: IUPAC-NIST solubility data series. 87. Rare earth metal chlorides in water and aqueous systems. Part 3. Heavy lanthanides (Gd–Lu). J. Phys. Chem. Ref. Data 38, 925–1011 (2009)

    Article  CAS  Google Scholar 

  18. Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare-earth electrolyte solutions at 25 °C. 6. Eu(NO3)3, Y(NO3)3, and YCl3. J. Chem. Eng. Data 27, 454–461 (1982)

    Article  CAS  Google Scholar 

  19. Archer, D.G.: Thermodynamic properties of the KCl + H2O system. J. Phys. Chem. Ref. Data 28, 1–17 (1999)

    Article  CAS  Google Scholar 

  20. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0–10.77 mol·kg−1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)

    Article  CAS  Google Scholar 

  21. Pitzer, K.S., Wang, P., Rard, J.A., Clegg, S.L.: Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; equations for CaCl2 and MgCl2. J. Solution Chem. 28, 265–282 (1999)

    Article  CAS  Google Scholar 

  22. Konings, R.J.M., Kovács, A.: Thermodynamic properties of the lanthanide(III) halides. In: Gschneidner Jr., K.A., Bünzli, J.-C.G., Pecharsky, V.K. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 33. Elsevier, Amsterdam (2003)

    Google Scholar 

  23. Spedding, F.H., Jones, K.C.: Heat capacities of aqueous rare earth chloride solutions at 25°. J. Phys. Chem. 70, 2450–2455 (1966)

    Article  CAS  Google Scholar 

  24. Spedding, F.H., Walters, J.P., Baker, J.L.: Apparent and partial molal heat capacities of some aqueous rare earth chloride solutions at 25 °C. J. Chem. Eng. Data 20, 438–443 (1975)

    Article  CAS  Google Scholar 

  25. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52, 2009–2036 (1988)

    Article  CAS  Google Scholar 

  26. Puigdomenech, I., Rard, J.A., Plyasunov, A.V., Grenthe, I.: Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe, I., Puigdomenech, I. (eds.) Modelling in Aquatic Chemistry. Chap. X. OECD Publications, Paris (1997)

    Google Scholar 

  27. Criss, C.M., Millero, F.J.: Modeling heat capacities of high valence-type electrolyte solutions with Pitzer’s equations. J. Solution Chem. 28, 849–864 (1999)

    Article  CAS  Google Scholar 

  28. Cordfunke, E.H.P., Konings, R.J.M.: The enthalpies of formation of lanthanide compounds II. Ln3+(aq). Thermochim. Acta. 375, 51–64 (2001)

    Article  CAS  Google Scholar 

  29. Habenschuss, A., Spedding, F.H.: Di-μ-chloro-bis[heptaaquapraseodymium(III)] tetrachloride [(H2O)7PrCl2Pr(H2O)7]Cl4. Cryst. Struct. Commun. 7, 535–541 (1978)

    CAS  Google Scholar 

  30. Habenschuss, A., Spedding, F.H.: Di-μ-chloro-bis[heptaaqualanthanum(III)] tetrachloride [(H2O)7PrCl2Pr(H2O)7]Cl4. Cryst. Struct. Commun. 8, 511–516 (1979)

    CAS  Google Scholar 

  31. Habenschuss, A., Spedding, F.H.: Dichlorohexaaquaneodymium(III) chloride [NdCl2(H2O)6]Cl. Cryst. Struct. Commun. 9, 71–76 (1980)

    CAS  Google Scholar 

  32. Bell, A.M.T., Smith, A.J.: Structure of hexaaquadichloroyttrium(III) chloride. Acta Crystallogr. C C46, 960–962 (1990)

    Article  CAS  Google Scholar 

  33. Tambornino, F., Bielec, P., Hoch, C.: Redetermination of [EuCl2(H2O)6]Cl. Acta Crystallogr. E E70, i27 (2014)

    Article  Google Scholar 

  34. Sommers, J.A., Westrum Jr., E.F.: Thermodynamics of the lanthanide halides I. Heat capacities and Schottky anomalies of LaCl3, PrCl3, and NdCl3 from 5 to 350 K. J. Chem. Thermodyn. 8, 1115–1136 (1976)

    Article  CAS  Google Scholar 

  35. Sommers, J.A., Westrum Jr., E.F.: Thermodynamics of the lanthanide halides II. Heat capacities and Schottky anomalies of SmCl3, EuCl3, and GdCl3 from 5 to 350 K. J. Chem. Thermodyn. 9, 1–26 (1977)

    Article  CAS  Google Scholar 

  36. Westrum Jr., E.F., Chirico, R.D., Gruber, J.B.: Thermodynamics of some lanthanide trihalides III. Reinterpretation of LnCl3 Schottky anomalies. J. Chem. Thermodyn. 12, 717–736 (1980)

    Article  CAS  Google Scholar 

  37. Gorbunov, V.E., Tolmach, P.I., Gavrichev, K.S., Totrova, G.A., Goryushkin, V.F.: Low-temperature specific heat of YbCl3. Russ. J. Phys. Chem. 60, 789–790 (1986); Zh. Fiz. Khim. 60, 1336–1318 (1986) (in Russian)

  38. Tolmach, P.I., Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., Goryushkin, V.F.: Low-temperature specific heats of dysprosium and lutetium trichlorides. Russ. J. Phys. Chem. 61, 1529–1532 (1987); Zh. Fiz. Khim. 61, 2904–2908 (1987) (in Russian)

  39. Tolmach, P.I., Gorbunov, V.E., Gavrichev, K.S., Iorish, V.S.: Thermodynamic properties of some lanthanide chlorides. J. Therm. Anal. 33, 845–849 (1988)

    Article  Google Scholar 

  40. Tomach, P.I., Gorbunov, V.E., Gavrichev, K.S., Goryushkin, V.F.: The low-temperature heat capacity of yttrium trichloride. Russ. J. Phys. Chem. 64, 579–580 (1990); Zh. Fiz. Khim. 64, 1088–1090 (1990) (in Russian)

  41. Tolmach, P.I., Gorbunov, V.E., Gavrichev, K.S., Golushina, L.N., Goryushkin, V.F.: The low-temperature heat capacity of erbium trichloride. Russ. J. Phys. Chem. 64, 580–582 (1990); Zh. Fiz. Khim. 64, 1090–1093 (1990) (in Russian)

  42. Tolmach, P.I., Gorbunov, V.E., Gavrichev, K.S., Goryushkin, V.F.: The low-temperature heat capacity of thulium trichloride. Russ. J. Phys. Chem. 64, 582–583 (1990); Zh. Fiz. Khim. 64, 1093–1095 (1990) (in Russian)

  43. Tolmach, P.I., Gorbunov, V.E., Gavrichev, K.S., Totrova, G.A., Goryushkin, V.S.: Low-temperature specific heat of HoCl3. Russ. J. Phys. Chem. 64, 583–585 (1990); Zh. Fiz. Khim. 64, 1096–1098 (1990) (in Russian)

  44. Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA Key Values for Thermodynamics. Hemisphere Publishing Corporation, New York (1989)

    Google Scholar 

  45. Rard, J.A., Platford, R.F.: Experimental methods: isopiestic. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  46. Spedding, F.H., Saeger, V.W., Gray, K.A., Boneau, P.K., Brown, M.A., DeKock, C.W., Baker, J.L., Shiers, L.E., Weber, H.O., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. I. Rare earth chlorides. J. Chem. Eng. Data 20, 72–81 (1975)

    Article  CAS  Google Scholar 

  47. Millero, F.J.: Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 56, 3123–3132 (1992)

    Article  CAS  Google Scholar 

  48. Luo, Y.-R., Byrne, R.H.: Carbonate complexation of yttrium and the rare earth elements in natural waters. Geochim. Cosmochim. Acta 68, 691–699 (2004)

    Article  CAS  Google Scholar 

  49. Spedding, F.H., Rard, J.A., Saeger, V.W.: Electrical conductances of some aqueous rare earth electrolyte solutions at 25 °C. II. Rare earth chlorides. J. Chem. Eng. Data 19, 373–378 (1974)

    Article  CAS  Google Scholar 

  50. Carroll, J.J., Mather, A.E. (evaluators): Solubility system: carbon dioxide with water. In IUPAC-NIST Solubility Database. NIST Standard Reference Database 106; http://srdata.nist.gov/solubility/sol_detail.aspx?sysID=62_1. Accessed 21 Nov 2014

  51. CO2 Now: http://co2now.org/Current-CO2/CO2-Now/annual-co2.html. Accessed 5 Mar 2015

  52. Yasunishi, A., Yoshida, F.: Solubility of carbon dioxide in aqueous electrolyte solutions. J. Chem. Eng. Data 24, 11–14 (1979)

    Article  CAS  Google Scholar 

  53. Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H. In: Mompean, F.J., Illemassene, M., Domenech-Orti, C., Ben Said, K. (eds.) Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003)

  54. Spahiu, K., Bruno, J.: A Selected Thermodynamic Database for REE to be used in HLNW Performance Assessment Exercises. SKB Technical Report 95-35. Svensk Kärnbränslehantering AB, Stockholm (1995)

  55. Mason, C.M.: The activity and osmotic coefficients of trivalent metal chlorides in aqueous solutions from vapor pressure measurements at 25°. J. Am. Chem. Soc. 60, 1638–1647 (1938)

    Article  CAS  Google Scholar 

  56. Wang, Z.-C., He, M., Wang, J., Li, J.L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006)

    Article  CAS  Google Scholar 

  57. Malatesta, F., Giacomelli, A., Zamboni, R.: Activity coefficients of electrolytes from the emf of liquid membrane cells. III: LaCl3, K3Fe(CN)6, and LaFe(CN)6. J. Solution. Chem. 23, 11–36 (1994)

    Article  CAS  Google Scholar 

  58. Malatesta, F., Bruni, F., Fanelli, N.: Activity coefficients of lanthanum salts at 298.15 K. Phys. Chem. Chem. Phys. 4, 121–126 (2002)

    Article  CAS  Google Scholar 

  59. He, M., Rard, J.A.: Revision of the osmotic coefficients, water activities and mean activity coefficients of the aqueous trivalent rare earth chlorides at T = 298.15 K. J. Solution Chem. 44, 2208–2221 (2015)

    Article  CAS  Google Scholar 

  60. Spedding, F.H., DeKock, C.W., Pepple, G.W., Habenschuss, A.: Heats of dilution of some aqueous rare earth electrolyte solutions at 25 °C. 3. Rare earth chlorides. J. Chem. Eng. Data 22, 58–70 (1977)

    Article  CAS  Google Scholar 

  61. Spedding, F.H., Miller, C.F.: Thermochemistry of the rare earths. I. Cerium and neodymium. J. Am. Chem. Soc. 74, 4195–4198 (1952)

    Article  CAS  Google Scholar 

  62. Spedding, F.H., Flynn, J.P.: Thermochemistry of the rare earths. II. Lanthanum, praseodymium, samarium, gadolinium, erbium, ytterbium and yttrium. J. Am. Chem. Soc. 76, 1474–1477 (1954)

    Article  CAS  Google Scholar 

  63. Spedding, F.H., Naumann, A.W., Eberts, R.E.: Heats of dilution and related thermodynamic properties of aqueous rare earth salt solutions at 25°; integral heats of solution of NdCl3·6H2O. J. Am. Chem. Soc. 81, 23–28 (1959)

    Article  CAS  Google Scholar 

  64. Csejka, D.A., Spedding, F.H.: Some Thermodynamic Properties of Aqueous Rare-Earth Chloride Solutions. USAEC report IS-417 (1961)

  65. Seifert, H.J., Funke, S.: Solution enthalpies of hydrates LnCl3·xH2O (Ln = Ce–Lu). Thermochim. Acta 320, 1–7 (1998)

    Article  CAS  Google Scholar 

  66. Spedding, F.H., Csejka, D.A., DeKock, C.W.: Heats of dilution of aqueous rare earth chloride solutions at 25°. J. Phys. Chem. 70, 2423–2429 (1966)

    Article  CAS  Google Scholar 

  67. Konings, R.J.M., Beneš, O.: The thermodynamic properties of the f-elements and their compounds. I. The lanthanide and actinide metals. J. Phys. Chem. Ref. Data 39, 043102-1–043102-47 (2010)

    Article  Google Scholar 

  68. Spedding, F.H., Bisbee, W.R.: Thermochemical measurements of some rare-earth trichlorides and metals. Unpublished draft manuscript, 13 pp. (available in electronic supplementary material)

  69. Morss, L.R.: Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions. Chem. Rev. 76, 827–841 (1976)

    Article  CAS  Google Scholar 

  70. Bisbee, W.R.: Some Calorimetric Studies of the Metals and Chlorides of Thulium and Lutetium. M. Sci. thesis, Iowa State University of Science and Technology (1960)

  71. Rard, J.A.: Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chem. Rev. 85, 555–582 (1985)

    Article  CAS  Google Scholar 

  72. Perachon, G., Thourey, J., Mathurin, D.: Enthalpies de formation du nitrate d’yttrium hexahydraté et de l’ion Y3+. Thermochim. Acta 18, 229–234 (1977)

    Article  CAS  Google Scholar 

  73. Wang, X.-Y., Jin, T.Z., Goudiakas, J., Fuger, J.: Thermodynamics of lanthanide elements IV. Molar enthalpies of formation of Y3+(aq), YCl3(cr), YBr3(cr), and YI3(cr). J. Chem. Thermodyn. 20, 1195–1202 (1988)

    Article  CAS  Google Scholar 

  74. Monayenkova, A.S., Lezhava, S.A., Popova, A.A., Tiphlova, L.A.: Enthalpy of formation of the yttrium ion in aqueous solution at infinite dilution. J. Chem. Thermodyn. 33, 1679–1686 (2001)

    Article  CAS  Google Scholar 

  75. Spedding, F.H., Baker, J.L., Walters, J.P.: Apparent and partial molal heat capacities of aqueous rare earth perchlorate solutions at 25 °C. J. Chem. Eng. Data 20, 189–195 (1975)

    Article  CAS  Google Scholar 

  76. Spedding, F.H., Baker, J.L., Walters, J.P.: Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at 25 °C. J. Chem. Eng. Data 24, 298–305 (1979)

    Article  CAS  Google Scholar 

  77. Vasilëv, V.A., Novikov, S.N., Karapet’yants, M.Kh.: Heat capacity and density of aqueous solutions of cerium(III) chloride at 25 °C. Russ. J. Phys. Chem. 49, 1137–1138 (1975); Zh. Fiz. Khim. 49, 1936–1937 (1975) (in Russian)

  78. Karapet’yants, M.Kh., Vasilëv, V.A., Novikov, S.N.: The heat capacities and densities of aqueous of yttrium(III) chloride solutions at 25 °C. Russ. J. Phys. Chem. 50, 622–623 (1976); Zh. Fiz. Khim. 50, 1031–1033 (1976) (in Russian)

  79. Babakulov, N., Latysheva, V.A.: Heat capacities of aqueous solutions of group III metal perchlorates. Russ. J. Phys. Chem. 48, 587–589 (1974); Zh. Fiz. Khim. 48, 1012–1014 (1974) (in Russian)

  80. Spitzer, J.J., Olofsson, I.V., Singh, P.P., Hepler, L.G.: Apparent molar heat capacities and volumes of aqueous electrolytes at 25 °C: Cr(NO3)3, LaCl3, K3Fe(CN)6, and K4Fe(CN)6. Can. J. Chem. 57, 2798–2803 (1979)

    Article  CAS  Google Scholar 

  81. Xiao, C., Tremaine, P.R.: Apparent molar heat capacities and volumes of LaCl3(aq), La(ClO4)3(aq) and Gd(ClO4)3(aq) between the temperatures 283 K and 338 K. J. Chem. Thermodyn. 28, 43–66 (1996)

    Article  CAS  Google Scholar 

  82. Hakin, A.W., Lukacs, M.J., Liu, J.L., Erickson, K.: The volumetric and thermochemical properties of YCl3(aq), YbCl3(aq), DyCl3(aq), SmCl3(aq), and GdCl3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 35, 1861–1895 (2003)

    Article  CAS  Google Scholar 

  83. Xiao, C., Tremaine, P.R.: The thermodynamics of aqueous trivalent rare earth elements. Apparent molar heat capacities and volumes of Nd(ClO4)3(aq), Eu(ClO4)3(aq), Er(ClO4)3(aq), and Yb(ClO4)3(aq) from the temperatures 283 K to 328 K. J. Chem. Thermodyn. 29, 827–852 (1997)

    Article  CAS  Google Scholar 

  84. Hakin, A.W., Lukacs, M.J., Liu, J.L., Erickson, K., Madhavji, A.: The volumetric and thermochemical properties of Y(ClO4)3(aq), Yb(ClO4)3(aq), Dy(ClO4)3(aq), and Sm(ClO4)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 35, 775–802 (2003)

    Article  CAS  Google Scholar 

  85. Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.-V.: Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 36, 773–786 (2004)

    Article  CAS  Google Scholar 

  86. Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.-V., Rard, J.A.: Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Chem. Thermodyn. 37, 153–167 (2005)

    Article  CAS  Google Scholar 

  87. Erikson, K.M., Hakin, A.W., Jones, S.N., Liu, J.L., Zahir, S.N.: Thermodynamics of selected aqueous rare-earth elements containing triflate salts at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Solution Chem. 36, 1679–1726 (2007)

    Article  Google Scholar 

  88. Marriott, R.A., Hakin, A.W., Rard, J.A.: Apparent molar heat capacities and apparent molar volumes of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) at T = 298.15 K and p = 0.1 MPa. J. Chem. Thermodyn. 33, 643–687 (2001)

    Article  CAS  Google Scholar 

  89. Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  90. Pitzer, K.S.: Ion Interaction Approach: Theory and Data Correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  91. Wood, S.A.: The aqueous geochemistry of the rare-earth elements and yttrium. 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990)

    Article  CAS  Google Scholar 

  92. Bonal, C., Morel, J.-P., Morel-Desrosiers, N.: Interactions between lanthanide cations and nitrate anions in water Part 2. Microcalorimetric determination of the Gibbs energies, enthalpies and entropies of complexation of Y3+ and trivalent lanthanide cations. J. Chem. Soc. Faraday Trans. 94, 1431–1436 (1998)

    Article  CAS  Google Scholar 

  93. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25 °C. J. Solution Chem. 19, 525–541 (1990)

    Article  CAS  Google Scholar 

  94. Jekel, E.C., Criss, C.M., Cobble, J.W.: The thermodynamic properties of high temperature aqueous solutions. VIII. Standard partial molal heat capacities of gadolinium chloride from 0 to 100°. J. Am. Chem. Soc. 86, 5404–5407 (1964)

    Article  CAS  Google Scholar 

  95. Krestkov, G.A., Kobenin, V.A., Semenovskii, S.V.: Thermodynamics of dissolution of anhydrous chlorides of cerium group elements (La, Pr, Nd, Sm) in water at temperatures of 0–100°C. Russ. J. Inorg. Chem. 17, 421–423 (1972)

    Google Scholar 

  96. Krestov, G.A., Kobenin, V.A., Semenovskii, S.V.: Thermodynamics of the dissolution of anhydrous chlorides of yttrium group elements (YCl3, TbCl3, ErCl3) in water at 0–100 °C. Russ. J. Inorg. Chem. 18, 1–2 (1973)

    Google Scholar 

  97. Criss, C.M., Millero, F.J.: Modeling the heat capacities of aqueous 1–1 electrolyte solutions with Pitzer’s equations. J. Phys. Chem. 100, 1288–1294 (1996)

    Article  CAS  Google Scholar 

  98. Allred, G.C., Woolley, E.M.: Heat capacities of HCl, NaOH, and NaCl at 283.15, 298.15 and 313.15 K: ΔC o p for ionization of water. J. Chem. Thermodyn. 13, 147–154 (1981)

    Article  CAS  Google Scholar 

  99. Tremaine, P.R., Sway, K., Barbero, J.A.: The apparent molar heat capacity of aqueous hydrochloric acid from 10 to 140  °C. J. Solution Chem. 15, 1–22 (1986)

    Article  CAS  Google Scholar 

  100. Ballerat-Busserolles, K., Ford, T.D., Call, T.G., Woolley, E.M.: Apparent molar volumes and heat capacities of aqueous acetic acid and sodium acetate at temperatures from T = 278.15 K to T = 393.15 K at the pressure 0.35 MPa. J. Chem. Thermodyn. 31, 741–762 (1999)

    Article  CAS  Google Scholar 

  101. Hepler, L.G., Hovey, J.K.: Standard state heat capacities of aqueous electrolytes and some related undissociated species. Can. J. Chem. 74, 639–649 (1996)

    Article  CAS  Google Scholar 

  102. Lemire, R.J., Campbell, A.B., Pan, P.: Apparent molar heat capacities and volumes for HClO4(aq) to 373 K. Thermochim. Acta 286, 225–231 (1996)

    Article  CAS  Google Scholar 

  103. Xiao, C., Pham, T., Xie, W., Tremaine, P.R.: Apparent molar volumes and heat capacities of aqueous trifuromenthanesulfonic acid and its sodium salt from 283 to 328 K. J. Solution Chem. 30, 201–211 (2001)

    Article  CAS  Google Scholar 

  104. Habenschuss, A., Spedding, F.H.: The coordination (hydration) of rare earth ions in aqueous chloride solutions from x-ray diffraction. III. SmCl3, EuCl3, and series behavior. J. Chem. Phys. 73, 442–450 (1980)

    Article  CAS  Google Scholar 

  105. Cossy, C., Helm, L., Powell, D.H., Merbach, A.E.: A change in coordination number from nine to eight along the lanthanide(III) aqua ion series in solution: a neutron diffraction study. New J. Chem. 19, 27–35 (1995)

    CAS  Google Scholar 

  106. Arblaster, J.W.: Selected values of the thermodynamic properties of scandium, yttrium, and the lanthanide elements. In: Handbook on the Physics and Chemistry of Rare Earths, vol. 43, chap. 258. Elsevier B.V., Amsterdam (2013)

Download references

Acknowledgments

The author is grateful to the personnel at Document Control, Ames Laboratory USDOE, for tracking down and providing me with a copy of reference 64, and Elizabeth M. Rard, Dr. Simon L. Clegg, Dr. Jelena Miladinović, Dr. Thomas J. Wolery and the library staff at Lawrence Livermore National Laboratory for help with locating copies of several of the references, and Frank Gouveia for preparing the plots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Rard.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rard, J.A. Critical Evaluation of the Standard Molar Entropies, Enthalpies of Formation, Gibbs Energies of Formation and Heat Capacities of the Aqueous Trivalent Rare Earth Ions, and the Corresponding Standard Molar Entropies, Enthalpies of Formation and Gibbs Energies of Formation of the Thermodynamically Stable RECl3·7H2O(cr) and RECl3·6H2O(cr). J Solution Chem 45, 1332–1376 (2016). https://doi.org/10.1007/s10953-016-0520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0520-8

Keywords

Navigation