Skip to main content

Advertisement

Log in

Thermodynamics of Selected Aqueous Rare-Earth Elements Containing Triflate Salts at T=(288.15, 298.15, 313.15 and 328.15) K and p=0.1 MPa

  • Special Issue Dedicated to Joseph Antoine Rard
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aqueous acidified solutions of the rare-earth-element (REE) triflates (Gd(CF3SO3)3(aq), Dy(CF3SO3)3(aq), Nd(CF3SO3)3(aq), Er(CF3SO3)3(aq), Yb(CF3SO3)3(aq) and Y(CF3SO3)3(aq)) have been prepared by the dissolution of the corresponding REE oxides in dilute aqueous trifluoromethanesulfonic acid (triflic acid, CF3SO3H(aq)). Relative densities and relative massic heat capacities have been measured for these systems over the approximate ionic strength range 0.10≤I/(mol⋅kg−1)≤1.35 at T=(288.15, 298.15, 313.15 and 328.15) K and p=0.1 MPa. These measurements were completed using a Sodev O2D vibrating tube densimeter and Picker-flow microcalorimeter, respectively. Relative densities and relative massic heat capacities for aqueous solutions of triflic acid and its sodium salt have also been measured over the concentration range 0.018≤m 2/(mol⋅kg−1)≤0.23 over the same temperature range at p=0.1 MPa.

Young’s rule has been used to calculate apparent molar volumes and apparent molar heat capacities of the aqueous solutions of REE triflate salts from the calculated apparent molar properties of the acidified salt solutions. These properties have been modeled using the Pitzer ion-interaction equations. The apparent molar properties of aqueous triflic acid solutions and aqueous solutions of its sodium salt have also been modeled using the same Pitzer ion-interaction equations.

The apparent molar properties at infinite dilution obtained from our property modeling have been used to calculate single ion volumes and single ion heat capacities for each of the aqueous ions; Gd 3+(aq) , Dy 3+(aq) , Nd 3+(aq) , Er 3+(aq) , Yb 3+(aq) , and Y 3+(aq) . The reported single ion values have been compared with those previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabot, J.-L., Maestro, P.: In: Howe-Grant, M. (ed.) Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., vol. 14, pp. 1091–1115. Wiley, New York (1995)

    Google Scholar 

  2. Encyclopedia of Chemical Technology, 4th edn., Imaging Technology to Lanthanides, vol. 4. Wiley, New York (1995)

  3. Hakin, A.W., Lukacs, M.J., Liu, J.L., Erickson, K., Madhavji, A.: The volumetric and thermochemical properties of Y(ClO4)3(aq), Yb(ClO4)3(aq), Dy(ClO4)3(aq), and Sm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 35, 775–802 (2003)

    Article  CAS  Google Scholar 

  4. Hakin, A.W., Lukacs, M.J., Liu, J.L., Erickson, K.: The volumetric and thermochemical properties of YClq(aq), YbCl3(aq), DyCl3(aq), SmCl3(aq), and GdCl3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 35, 1861–1895 (2003)

    Article  CAS  Google Scholar 

  5. Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.-V.: Apparent molar heat capacities and apparent molar volumes of Pr(ClO4)3(aq), Gd(ClO4)3(aq), Ho(ClO4)3(aq), and Tm(ClO4)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 36, 773–786 (2004)

    Article  CAS  Google Scholar 

  6. Hakin, A.W., Liu, J.L., Erickson, K., Munoz, J.-V., Rard, J.A.: Apparent molar volumes and apparent molar heat capacities of Pr(NO3)3(aq), Gd(NO3)3(aq), Ho(NO3)3(aq), and Y(NO3)3(aq) at T=(288.15, 298.15, 313.15, and 328.15) K and p=0.1 MPa. J. Chem. Thermodyn. 37, 153–167 (2005)

    Article  CAS  Google Scholar 

  7. Marriott, R.M., Hakin, A.W., Rard, J.A.: Apparent molar heat capacities and apparent molar volumes of Y2(SO4)3(aq), La2(SO4)3(aq), Pr2(SO4)3(aq), Nd2(SO4)3(aq), Eu2(SO4)3(aq), Dy2(SO4)3(aq), Ho2(SO4)3(aq), and Lu2(SO4)3(aq) at T=298.15 K and p=0.1 MPa. J. Chem. Thermodyn. 33, 643–687 (2001)

    Article  CAS  Google Scholar 

  8. Hakin, A.W., Lukacs, M.J., Liu, J.L.: Densities and apparent molar volumes of HClO4(aq) and Yb(ClO4)3(aq) at elevated temperatures and pressures. J. Chem. Thermodyn. 36, 759–772 (2004)

    Article  CAS  Google Scholar 

  9. Millero, F.J.: Stability constant for the formation of rare-earth inorganic complexes as a function of ionic strength. Geochem. Cosmochim. Acta 56, 3123–3132 (1992)

    Article  CAS  Google Scholar 

  10. Rard, J.A., Shiers, L.E., Heiser, D.J., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 3. The rare earth nitrates. J. Chem. Eng. Data 22, 227–247 (1977)

    Google Scholar 

  11. Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. Lanthanum nitrate, praseodymium nitrate, and neodymium nitrate. J. Chem. Eng. Data 24, 348–354 (1979)

    Article  CAS  Google Scholar 

  12. Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 5. Dysprosium trinitrate, holmium trinitrate, and lutetium trinitrate. J. Chem. Eng. Data 26, 391–395 (1981)

    Article  CAS  Google Scholar 

  13. Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 6. Europium trinitrate, yttrium trinitrate, and yttrium trichloride. J. Chem. Eng. Data 27, 454–461 (1982)

    Article  CAS  Google Scholar 

  14. Bonal, C., Morel, J.-P., Morel-Desrosiers, N.: Interactions between lanthanide cations and nitrate anion in water part 2. Microcalorimetric determination of the Gibbs energies, enthalpies, and entropies of complexation of Y3+ and trivalent lanthanide cations. J. Chem. Soc. Faraday Trans. 94, 1431–1436 (1998)

    Article  CAS  Google Scholar 

  15. Xiao, C., Tremaine, P.R.: Apparent molar heat capacities and volumes of LaCl3(aq), La(ClO4)3(aq), and Gd(ClO4)3(aq) between temperatures 283 K and 338 K. J. Chem. Thermodyn. 28, 43–66 (1996)

    Article  CAS  Google Scholar 

  16. Xiao, C., Tremaine, P.R.: The thermodynamics of aqueous trivalent rare earth elements. Apparent molar heat capacities and volumes of Nd(ClO4)3(aq), Eu(ClO4)3(aq), Er(ClO4)3(aq), and Yb(ClO4)3(aq) from the temperatures 283 K to 328 K. J. Chem. Thermodyn. 29, 827–852 (1997)

    Article  CAS  Google Scholar 

  17. Spedding, F.H., Jones, K.C.: Heat capacities of aqueous rare earth chloride solutions at 25 °C. J. Phys. Chem. 70, 2450–2455 (1966)

    Article  CAS  Google Scholar 

  18. Spedding, F.H., Rikal, M.J., Ayers, B.O.: Apparent molal volumes of some aqueous rare earth chloride and nitrate solutions at 25 °C. J. Phys. Chem. 70, 2440–2449 (1966)

    Article  CAS  Google Scholar 

  19. Spedding, F.H., Shiers, L.E., Brown, M.A., Derer, J.L., Swanson, D.L., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. II. Rare earth perchlorates. J. Chem. Eng. Data 20, 81–88 (1975)

    Article  CAS  Google Scholar 

  20. Spedding, F.H., Shiers, L.E., Brown, M.A., Baker, J.L., Guitierrez, L., McPowell, L.S., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 °C. III. Rare earth nitrates. J. Phys. Chem. 79, 1087–1096 (1975)

    Article  CAS  Google Scholar 

  21. Spedding, F.H., Baker, J.L., Walters, J.P.: Apparent and partial molal heat capacities of aqueous rare earth perchlorate solutions at 25 °C. J. Chem. Eng. Data 20, 189–195 (1975)

    Article  CAS  Google Scholar 

  22. Spedding, F.H., Walters, J.P., Baker, J.L.: Apparent and partial molar heat capacities of some aqueous rare earth chloride solutions at 25 °C. J. Chem. Eng. Data 20, 438–443 (1975)

    Article  CAS  Google Scholar 

  23. Spedding, F.H., Baker, J.L., Walters, J.P.: Apparent and partial molal heat capacities of aqueous rare earth nitrate solutions at 25 °C. J. Am. Chem. Soc. 24, 298–305 (1979)

    CAS  Google Scholar 

  24. Xiao, C., Tremaine, P.R.: Apparent molar volumes of aqueous solutions of sodium trifluoromethane sulfonate and trifluoromethanesulfonic acid from 283 K to 600 K and pressures up to 20 MPa. J. Solution Chem. 26, 277–294 (1997)

    CAS  Google Scholar 

  25. Xiao, C., Pham, T., Xie, W., Tremaine, P.R.: Apparent molar volumes and heat capacities of aqueous trifluoromethanesulfonic acid and its sodium salt from 283 to 328 K. J. Solution Chem. 30, 201–211 (2001)

    Article  CAS  Google Scholar 

  26. Skoog, D.A., West, D.M.: Fundamentals of Analytical Chemistry, 4th edn., p. 734. Saunders, Philadelphia (1982)

    Google Scholar 

  27. Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R.: Analytical Chemistry: An Introduction, 7th edn., p. 742. Saunders, Philadelphia (2000)

    Google Scholar 

  28. Desnoyers, J.E., Visser, C., Perron, G., Picker, P.: Reexamination of the heat capacities obtained by Flow Calorimetry. Recommendation for the use of a chemical standard. J. Solution Chem. 5, 605–616 (1976)

    Article  CAS  Google Scholar 

  29. Kell, G.S.: Precise representation of volume properties of water at one atmosphere. J. Chem. Eng. Data 12, 56–69 (1967)

    Article  Google Scholar 

  30. Handbook of Chemistry and Physics, 41st edn., p. 2132. Chemical Rubber, Cleveland (1959–1960)

  31. Archer, D.G., Wang, P.: The dielectric constant of water and Debye-Huckel limiting slope. J. Phys. Chem. Ref. Data 19, 371–411 (1990)

    Article  CAS  Google Scholar 

  32. Hill, P.G.J.: A unified fundamental equation for the thermodynamic properties of H2O. Phys. Chem. Ref. Data 19, 1233–1274 (1990)

    Article  CAS  Google Scholar 

  33. Pytkowicz, R.M.: Activity Coefficients in Electrolyte Solutions, vol. 1. CRC Press, Boca Raton (1979)

    Google Scholar 

  34. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. II: Debye-Huckel parameters for activity coefficients and relative partial molal properties. Am. J. Sci. 274, 1199–1261 (1974)

    Article  CAS  Google Scholar 

  35. Helgeson, H.C., Kirkham, D.H.: Theoretical prediction of the thermodynamic behavior of aqueous electrolytes and high pressures and temperatures I: Summary of the thermodynamic/electrostatic properties of the solvent. Am. J. Sci. 274, 1089–1198 (1974)

    Article  CAS  Google Scholar 

  36. Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high-pressure and temperatures-revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)

    Article  CAS  Google Scholar 

  37. Young, T.F., Smith, M.B.: Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58, 716–724 (1954)

    Article  CAS  Google Scholar 

  38. Xiao, C., Tremaine, P.R.: Apparent molar volumes of La(CF3SO3)3(aq) and Gd(CF3SO3)3(aq) at 278 K, 298 K, and 318 K at pressures to 30.0 MPa. J. Chem. Eng. Data 41, 1075–10787 (1996)

    Article  CAS  Google Scholar 

  39. Stimson, H.F.: Heat units and temperature scales for calorimetry. J. Am. Phys. 23, 614–622 (1955)

    Article  CAS  Google Scholar 

  40. Hovey, J.K.: Thermodynamics of aqueous solutions, Ph.D. thesis, University of Alberta (1988)

  41. Hovey, J.K., Hepler, L.G., Tremaine, P.R.: Thermodynamics of aqueous aluminate ion: standard partial molar heat capacities and volumes of Al(OH) 4(aq) from 10 to 55 °C. J. Phys. Chem. 92, 1323–1332 (1988)

    Article  CAS  Google Scholar 

  42. Wood, S.A.: The aqueous geochemistry of the rare earths and yttrium 1. Review of available low temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem. Geol. 82, 159–186 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristy M. Erickson or Andrew W. Hakin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erickson, K.M., Hakin, A.W., Jones, S.N. et al. Thermodynamics of Selected Aqueous Rare-Earth Elements Containing Triflate Salts at T=(288.15, 298.15, 313.15 and 328.15) K and p=0.1 MPa. J Solution Chem 36, 1679–1726 (2007). https://doi.org/10.1007/s10953-007-9209-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9209-3

Keywords

Navigation