Skip to main content
Log in

AC Magnetic Loss Reduction of Fe-(x)Si Soft Magnetic Composites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the magnetic properties and reduce the core loss of a soft magnetic composite (SMC) core as the mixture of Fe-Si alloy and epoxy. In order to develop a soft magnetic core with high power driving characteristics, we investigated the magnetic and loss characteristics at different Si contents in the Fe–Si alloy-based SMC core. As the Si content was increased from 3.5 to 6.5 wt.%, the permeability and Q-factor of the core increased, and the core loss decreased. In particular, the Fe-6.5Si alloy–based SMC core containing 6.5 wt.% of Si showed the highest permeability of 23.27 H/m at 1 MHz as well as the largest Q-factor of 66.58 at the resonance frequency of 1.38 MHz. The Fe-6.5Si SMC core exhibited the lowest core loss of 693.94 mW/cm3 at 1 MHz. The findings of this study showed that the changes in the magnetic and electrical properties of the powder due to the addition of Si affects the magnetic permeability and core loss properties of the SMC core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Svensson, L., Frogner, K., Jeppsson, P., Cedell, T., Andersson, M.: Soft magnetic moldable composites: properties and applications. J. Magn. Magn. Mater. 324, 2717–2722 (2012). https://doi.org/10.1016/j.jmmm.2012.03.049

    Article  ADS  Google Scholar 

  2. Goldman, A.: Metal powder cores for telecommunications applications, in: Handbook of modern ferromagnetic materials, Springer US, Boston, MA, pp. 183–205 (1999). https://doi.org/10.1007/978-1-4615-4917-8_10

  3. Kim, H.-J.: Research trend of soft magnetic composite materials with high energy efficiency. J. Korean Magn. Soc. 21, 77–82 (2011). https://doi.org/10.4283/JKMS.2011.21.2.077

    Article  Google Scholar 

  4. Silveyra, J.M., Ferrara, E., Huber, D.L., Monson, T.C.: Soft magnetic materials for a sustainable and electrified world. Science 362(2018), (1979). https://doi.org/10.1126/science.aao0195

  5. Li, W., Cai, H., Kang, Y., Ying, Y., Yu, J., Zheng, J., Qiao, L., Jiang, Y., Che, S.: High permeability and low loss bioinspired soft magnetic composites with nacre-like structure for high frequency applications. Acta Mater. 167, 267–274 (2019). https://doi.org/10.1016/j.actamat.2019.01.035

    Article  ADS  Google Scholar 

  6. Sunday, K.J., Taheri, M.L.: Soft magnetic composites: recent advancements in the technology. Met. Powder Rep. 72, 425–429 (2017). https://doi.org/10.1016/j.mprp.2016.08.003

    Article  Google Scholar 

  7. Zhu, Q., Li, L., Masteller, M.S., del Corso, G.J.: An increase of structural order parameter in Fe–Co–V soft magnetic alloy after thermal aging. Appl Phys Lett. 69, 3917–3919 (1996). https://doi.org/10.1063/1.117569

    Article  ADS  Google Scholar 

  8. Makino, A.: Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high $B$of 1.8–1.9T contributable to energy saving. IEEE Trans. Magn. 48, 1331–1335 (2012). https://doi.org/10.1109/TMAG.2011.2175210

  9. Talaat, A., Suraj, M.V., Byerly, K., Wang, A., Wang, Y., Lee, J.K., Ohodnicki, P.R.: Review on soft magnetic metal and inorganic oxide nanocomposites for power applications. J. Alloys Compd. 870, 159500 (2021). https://doi.org/10.1016/j.jallcom.2021.159500

  10. Overman, N.R., Jiang, X., Kukkadapu, R.K., Clark, T., Roosendaal, T.J., Coffey, G., Shield, J.E., Mathaudhu, S.N.: Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons. Mater. Charact. 136, 212–220 (2018). https://doi.org/10.1016/j.matchar.2017.12.019

  11. Saito, T., Takemoto, S.: Core loss in Fe-Si powder cores. J. Magn. Soc. Japan. 155–160, (2013). https://doi.org/10.3379/msjmag.1302R012

  12. Lee, M.Y., Choi, Y.J., Lee, S.H., Ahn, J.H., Lee, B.W.: Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications. J. Mater. Sci.: Mater. Electron. 33, 15763–15772 (2022). https://doi.org/10.1007/s10854-022-08478-1

    Article  Google Scholar 

  13. Zhu, S., Wang, Z., Kan, X., Feng, S., Liu, X.: FeNi/Glass soft magnetic composites with high magnetic properties. J Supercond Nov Magn. (2022). https://doi.org/10.1007/s10948-022-06166-z

    Article  Google Scholar 

  14. Yao, X., Lu, P., Tian, Y., Lu, G.-Q., Mei, Y.: A 200 °C curable soft magnetic composite with high permeability and low core loss for power applications at >1 MHz. J. Magn. Magn. Mater. 535, 168061 (2021). https://doi.org/10.1016/j.jmmm.2021.168061

  15. Yu, H., Zhou, S., Zhang, G., Dong, B., Meng, L., Li, Z., Dong, Y., Cao, X.: The phosphating effect on the properties of FeSiCr alloy powder. J. Magn. Magn. Mater. 552, 168741 (2022). https://doi.org/10.1016/j.jmmm.2021.168741

  16. Hsiang, H.-I., Wang, S.-K., Chen, C.-C.: Electromagnetic properties of FeSiCr alloy powders modified with amorphous SiO2. J. Magn. Magn. Mater. 514, 167151 (2020). https://doi.org/10.1016/j.jmmm.2020.167151

  17. Wu, Y.-P., Hsiang, H.-I.: Sintering temperature and atmosphere effects on electric and magnetic properties of multilayer FeSiCr alloy inductors. Mater. Sci. Eng.: B. 275, 115523 (2022). https://doi.org/10.1016/j.mseb.2021.115523

  18. Choi, Y.J., Ahn, J.H., Kim, D.H., Kim, Y.R., Lee, B.W.: Core-loss reduction of Fe–Si–Cr crystalline alloy according to particle size in the high frequency band. Curr. Appl. Phys. 39, 324–330 (2022). https://doi.org/10.1016/j.cap.2022.05.021

    Article  ADS  Google Scholar 

  19. Luo, F., Fan, X., Luo, Z., Hu, W., Wang, J., Wu, Z., Li, G., Li, Y., Liu, X.: Preparation and magnetic properties of FeSiAl-based soft magnetic composites with MnO/Al2O3 insulation layer. J. Magn. Magn. Mater. 498, 166084 (2020). https://doi.org/10.1016/j.jmmm.2019.166084

  20. Li, H., Yang, H., Li, Z., Li, Z., Liu, X.: Multifunctional FeSiAl soft magnetic composites with inorganic–organic hybrid insulating layers for high mechanical strength, low core loss and comprehensive anti-corrosion. J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-09602-x

    Article  Google Scholar 

  21. Wang, J., Song, S., Sun, H., Xue, Z.: Improvement of magnetic properties for FeSi/FeSiAl compound soft magnetic composites by introducing impact of powder size matching. J. Mater. Sci.: Mater. Electron. 32, 8545–8556 (2021). https://doi.org/10.1007/s10854-021-05488-3

    Article  Google Scholar 

  22. Wang, C., Liu, J.H., Peng, X.L., Li, J., Yang, Y.T., Han, Y.B., Xu, J.C., Hong, B., Gong, J., Ge, H.L., Wang, X.Q.: FeSiCrB amorphous soft magnetic composites filled with Co2Z hexaferrites for enhanced effective permeability. Adv. Powder Technol. 33, 103378 (2022). https://doi.org/10.1016/j.apt.2021.11.030

  23. Woo, H.J., Ahn, J.H., Kim, C.P., Choi, D.H., Kim, S., Lee, B.W.: Effect of the particle size classification of FeSiCrB amorphous soft magnetic composites to improve magnetic properties of power inductors. J. Non Cryst. Solids. 577, 121309 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121309

  24. Kim, D.H., Yeo, J.G., Choi, Y.J., Lee, S.H., An, S.Y., Kim, J.Y., Lee, B.W.: Magnetic properties of amorphous metallic composites with various particle sizes. J. Korean Phys. Soc. 79, 1037–1041 (2021). https://doi.org/10.1007/s40042-021-00309-6

    Article  ADS  Google Scholar 

  25. Shokrollahi, H., Janghorban, K.: Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–12 (2007). https://doi.org/10.1016/j.jmatprotec.2007.02.034

    Article  Google Scholar 

  26. Yicheng Chen, P.: Pillay, An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation, in: Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344), IEEE, n.d.: pp. 759–766 (2022). https://doi.org/10.1109/IAS.2002.1042645

  27. Banerjee, P., Kumar, N.S., Franco, A., Swain, A.K., Chandra K.Babu Naidu, K.: Insights into the dielectric loss mechanism of bianisotropic FeSi/SiC composite materials. ACS Omega. 5, 25968–25972 (2020). https://doi.org/10.1021/acsomega.0c03409

Download references

Funding

This research was supported by Materials, Components & Equipment Research Program funded by the Gyeonggi Province (AICT-003-T1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wha Lee.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y.J., Kim, D.H. & Lee, B.W. AC Magnetic Loss Reduction of Fe-(x)Si Soft Magnetic Composites. J Supercond Nov Magn 36, 909–914 (2023). https://doi.org/10.1007/s10948-023-06512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06512-9

Keywords

Navigation