Skip to main content
Log in

Impact of Lanthanum-Doping on the Physical and Electrical Properties of Cobalt Ferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Cobalt ferrites have attracted extraordinary attention due to their high coercivity, chemical stability, and mechanical hardness. Lanthanum doped-cobalt ferrites having chemical formula CoLaxFe2-xO4 with composition x = (0.00, 0.015, 0.045, 0.060) were synthesized by chemical co-precipitation method. The prepared samples were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and current-voltage (I-V) technique. The structure of the crystal was analyzed by X-ray diffraction. The crystallite size of nanoparticles was examined in the range of 21–25 nm, and a fluctuating trend was found with the inclusion of La3+ cations. The X-ray diffraction patterns verify the contraction of lattice constant and unit cell volume with the substitution of La3+ cations except for the concentration of x = 0.060. Lattice constant was in the range of 8.34 Å–8.41 Å while unit volume cell was in the range of 580 Å3–596 Å3. The resistivity of all samples was calculated by the application of two probes I-V technique. The maximum resistivity of the order of 81.129 × 105 Ω cm was found for the concentration of x = 0.060 at 723 K which makes it useful for high-frequency gimmicks applications. The resistivity and drift mobility were found inversely related to each other. The inverse relation low-frequency absorption band and high-frequency absorption bands were analyzed by Fourier-transform infrared spectroscopy technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, X., Li, Y., Li, J., Yu, G., Zuo, L., Zhang, H.: Effect of BiVO4 doping on the magnetic properties and microstructure of NiCuZn ferrites. J. Mater. Sci. Mater. Electron. 25(10), 4230–4234 (2014)

    Article  Google Scholar 

  2. Yuan, L., Zhu, H., Jin, Y.: Microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites with SiO2–CaO–Na2O–K2O glass. J. Mater. Sci. Mater. Electron. 27(1), 198–202 (2016)

    Article  Google Scholar 

  3. Huan, L., Tang, X., Su, H., Zhang, H., Jing, Y.: Effects of SiO2 concentration on the DC-bias-superposition characteristics of the NiCuZn ferrites. J. Mater. Sci. Mater. Electron. 26(5), 3275–3281 (2015)

    Article  Google Scholar 

  4. Jin, Y., Zhu, H., Xu, Y., Zhu, H., Zhou, H., Jin, Y.: Microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites with various borosilicate glasses. J. Mater. Sci. Mater. Electron. 27(1), 517–521 (2016)

    Article  Google Scholar 

  5. Zahir, R., Chowdhury, F.-U.-Z., Uddin, M., Hakim, M.: Structural, magnetic and electrical characterization of cd-substituted mg ferrites synthesized by double sintering technique. J. Magn. Magn. Mater. 410, 55–62 (2016)

    Article  ADS  Google Scholar 

  6. Singh, S., Sahai, A., Katyal, S., Goswami, N.J.M.S.-P.: Structural, optical and vibrational study of zinc copper ferrite nanocomposite prepared by exploding wire technique. Mater. Sci.-Pol. 36(4), 722–732 (2018)

    Article  ADS  Google Scholar 

  7. Yang, Y., Wang, F., Shao, J., Huang, D., Wan, M., Cao, Q.: Effects of La/Zn ratios on structural and magnetic properties of Sr1−xLaxFe12− yZnyO19 hexagonal ferrites. Mater. Technol. 32(3), 165–170 (2017)

    Article  Google Scholar 

  8. Arshad, M., Maqsood, A., Gul, I., Anis-Ur-Rehman, M.: Fabrication, electrical and dielectric characterization of Cd-Ni nanoferrites. Mater. Res. Bull. 87, 177–185 (2017)

    Article  Google Scholar 

  9. Wang, Y., Wu, X., Zhang, W., Chen, W.: Synthesis and electromagnetic properties of La-doped Ni–Zn ferrites. J. Magn. Magn. Mater. 398, 90–95 (2016)

    Article  ADS  Google Scholar 

  10. Al Angari, Y.: Magnetic properties of La-substituted NiFe2O4 via egg-white precursor route. J. Magn. Magn. Mater. 323(14), 1835–1839 (2011)

    Article  ADS  Google Scholar 

  11. Kumar, P., Sharma, S., Knobel, M., Singh, M.: Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique. J. Alloys Compd. 508(1), 115–118 (2010)

    Article  Google Scholar 

  12. Gul, I., Maqsood, A.: Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compd. 465(1–2), 227–231 (2008)

    Article  Google Scholar 

  13. Mane, D., Devatwal, U., Jadhav, K.J.M.L.: Structural and magnetic properties of aluminium and chromium co-substituted cobalt ferrite. Mater. Lett. 44(2), 91–95 (2000)

    Article  Google Scholar 

  14. Sawatzky, G., Van Der Woude, F., Morrish, A.: Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys. 39(2), 1204–1205 (1968)

    Article  ADS  Google Scholar 

  15. Yadav, R.S., et al.: Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2− xLaxO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28(12), 9139–9154 (2017)

    Article  Google Scholar 

  16. Mariosi, F.R., Venturini, J., da Cas Viegas, A., Bergmann, C.P.: Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 46(3), 2772–2779 (2020)

    Article  Google Scholar 

  17. Yadav, R.S., et al.: Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(4), 045002 (2017)

    Article  ADS  Google Scholar 

  18. Amin, N., et al.: Structural, electrical, optical and dielectric properties of yttrium substituted cadmium ferrites prepared by Co-Precipitation method. Ceram. Int. 46, 20798–20809 (2020)

    Article  Google Scholar 

  19. Hussain, K., Amin, N., Arshad, M.I.: Evaluation of structural, optical, dielectric, electrical, and magnetic properties of Ce3+ doped Cu0.5Cd0.25Co0.25Fe2-xO4 spinel nano-ferrites. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.09.185

  20. Rehman, A.U., et al.: Controllable synthesis of La3+ doped Zn0.5Co0. 25Cu0.25Fe2− xLaxO4 (x= 0.0, 0.0125, 0.025, 0.0375, 0.05) nano-ferrites by sol-gel auto-combustion route. Ceram. Int. 46, 29297–29308 (2020)

    Article  Google Scholar 

  21. Jian, X., et al.: Heterostructured nanorings of Fe− Fe3O4@ C hybrid with enhanced microwave absorption performance. ACS Appl. Mater. Interfaces. 10(11), 9369–9378 (2018)

    Article  Google Scholar 

  22. Jian, X., et al.: Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces. 8(9), 6101–6109 (2016)

    Article  Google Scholar 

  23. Jiang, J., Feng, Y., Mahmood, N., Liu, F., Hou, Y.: SnS2/graphene composites: Excellent anode materials for lithium ion battery and photolysis catalysts. Sci. Adv. Mater. 5(11), 1667–1675 (2013)

    Article  Google Scholar 

  24. Farooq, M.U., et al.: Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site. J. Alloys Compd. 691, 572–577 (2017)

    Article  Google Scholar 

  25. Khan, M.W., et al.: Nitrogen-Doped Oxygenated Molybdenum Phosphide as an Efficient Electrocatalyst for Hydrogen Evolution in Alkaline Media. Front. Chem. 8, 733 (2020)

    Article  ADS  Google Scholar 

  26. Mohiuddin, M., et al.: Synthesis of two-dimensional hematite and iron phosphide for hydrogen evolution. J. Mater. Chem. A. 8(5), 2789–2797 (2020)

    Article  Google Scholar 

  27. Liu, Y., Wei, S., Xu, B., Wang, Y., Tian, H., Tong, H.: Effect of heat treatment on microwave absorption properties of Ni–Zn–Mg–La ferrite nanoparticles. J. Magn. Magn. Mater. 349, 57–62 (2014)

    Article  ADS  Google Scholar 

  28. Dasan, Y.K., Guan, B.H., Zahari, M.H., Chuan, L.K.: Influence of La3+ Substitution on Structure,Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite. (2017). https://doi.org/10.1371/journal.pone.0170075

  29. El-Hagary, M., Matar, A., Shaaban, E.R., Emam-Ismail, M.: The influence of cd doping on the microstructure and optical properties of nanocrystalline copper ferrite thin films. Mater. Res. Bull. 48, 2279–2285 (2013)

    Article  Google Scholar 

  30. Lin, Q., Yuan, G., He, Y., Wang, L., Dong, J., Yu, Y.: The influence of La-substituted Cu0.5Co0.5Fe2O4 nano particles on its structural and magnetic properties. Mater. Des. 78, 80–84 (2015)

    Article  Google Scholar 

  31. Demirci, Ç., Manna, P., Wroczynskyj, Y., Aktürk, S., Van Lierop, J.: Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency. J. Magn. Magn. Mater. 458, 253–260 (2018)

    Article  ADS  Google Scholar 

  32. Bhukal, S., Bansal, S., Singhal, S.: Co0.6Zn0.4Cu0.2CdxFe1.8−xO4 (0.2⩽ x⩽ 0.8) magnetic ferrite nano-particle: synthesis, characterization and photo-catalytic degradation of methyl orange. J. Mol. Struct. 1059, 150–158 (2014)

    Article  ADS  Google Scholar 

  33. Deepapriya, S., et al.: Investigation on lanthanum substitution in magnetic and structural properties of group IV elements. Vacuume. 161, 5–13 (2019)

    Article  ADS  Google Scholar 

  34. Masoudpanah, S., Ebrahimi, S.S., Derakhshani, M., Mirkazemi, S.: Structure and magnetic properties of La substituted ZnFe2O4 nanoparticles synthesized by sol–gel autocombustion method. J. Magn. Magn. Mater. 370, 122–126 (2014)

    Article  ADS  Google Scholar 

  35. Chaudhari, V., et al.: Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2− xO4 nanoparticles fabricated by sol–gel method. J. Alloys Compd. 549, 213–220 (2013)

    Article  Google Scholar 

  36. Wang, W., et al.: Microstructure and magnetic properties of MFe2O4 (M= Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. J. Appl. Phys. 117(17), 17A328 (2015)

    Article  Google Scholar 

  37. Hosseinpour, A., Sadeghi, H., Morisako, A.: Simulation of DC-hopping conduction in spinel ferrites using free electron gas model. J. Magn. Magn. Mater. 316(2), e283–e286 (2007)

    Article  ADS  Google Scholar 

  38. Verwey, E., De Boer, F., Van Santen, J.H.: Cation arrangement in spinels. J. Chem. Phys. 16(12), 1091–1092 (1948)

    Article  ADS  Google Scholar 

  39. Raghasudha, M., Ravinder, D., Veerasomaiah, P.: Electrical resistivity studies of Cr doped mg nano-ferrites. Mater. Discov. 2, 50–54 (2015)

    Article  Google Scholar 

  40. Kharabe, R., Devan, R., Chougale, B.: Structural and electrical properties of cd-substituted Li–Ni ferrites. J. Alloys Compd. 463(1–2), 67–72 (2008)

    Article  Google Scholar 

  41. Hussain, K., et al.: Study of structural, optical, electrical and magnetic properties of Cu2+ doped Zn0.4Co0.6-xCe0.1Fe1.9O4 spinel ferrites. Phys. B Condens. Matter. 584, 412078 (2020)

    Article  Google Scholar 

  42. Patange, S., Shirsath, S.E., Lohar, K., Jadhav, S., Kulkarni, N., Jadhav, K.J.P.B.C.M.: Electrical and switching properties of NiAlxFe2− xO4 ferrites synthesized by chemical method. Phys. B Condens. Matter. 406(3), 663–668 (2011)

    Article  ADS  Google Scholar 

  43. Hasolkar, S.S., Naik, P.: Effect of Gd3+ doping on structural, magnetic and electrical properties of Mn0.5Co0.5Fe2-xGdxO4 nano-particles prepared using combustion synthesis. J. Alloys Compd. 823, 153603 (2020)

  44. Kamran, M., Anis-ur-Rehman, M.: Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J. Alloys Compd. 822, 153583 (2020)

  45. Iqbal, M.J., Siddiquah, M.R.: Structural, electrical and magnetic properties of Zr–mg cobalt ferrite. J. Magn. Magn. Mater. 320(6), 845–850 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran Arshad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, A., Razzaq, A., Naz, S. et al. Impact of Lanthanum-Doping on the Physical and Electrical Properties of Cobalt Ferrites. J Supercond Nov Magn 34, 1855–1864 (2021). https://doi.org/10.1007/s10948-021-05802-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05802-4

Keywords

Navigation