Skip to main content
Log in

Compressed H3S, Superfluid Density and the Quest for Room-Temperature Superconductivity

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The discovery of superconductivity at 203 K in highly compressed sulphur hydride validates the ideas put forward by Ashcroft 50 years ago and galvanises the quest for room-temperature superconductivity. But at such temperatures, thermal fluctuations might be expected to break up Cooper pairs. For example, in the cuprates, fluctuations reduce T c by 30% or more below the mean-field value. Similar effects are found in iron pnictides. Here, we ask: how does superconductivity survive in sulphur hydride at such high temperatures? To answer this, we examine the superfluid density which is the key parameter for quantifying fluctuations in both amplitude and phase. We show that dimensionality plays a key role in suppressing or enhancing thermal fluctuations to the benefit of hydrogen sulphide and the detriment of its more layered 2D competitors. We find that the temperature scale for phase fluctuations, T φ , in superconducting H3S exceeds 1200 K, and therefore, these are irrelevant at 200 K. But the amplitude fluctuation temperature scale, T amp, at around 300 K is much lower and this has important implications for the ongoing quest for room temperature superconductivity. Appealing to the way in which superfluid density, T φ , T amp and T c scale with each other it seems that room temperature superconductivity is nearly ruled out, but perhaps not quite. It will require 3D systems with a large Fermi velocity to achieve this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wigner, E., Huntington, H.B.: On the possibility of a metallic modification of hydrogen. J. Chem. Phys. 3, 764 (1935)

    Article  ADS  Google Scholar 

  2. Dias, R., Silvera, I.F.: Observation of the Wigner-Huntington transition to solid metallic hydrogen. Science. 355, 715–718 (2017)

    Article  ADS  Google Scholar 

  3. Eremets, M.I., Drozdov, A.P.: Comments on the claimed observation of the Wigner-Huntington Transition to Metallic Hydrogen. arXiv:http://arXiv.org/abs/1702.05125 (2017)

  4. Ashcroft, N.W.: Metallic hydrogen: A high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968)

    Article  ADS  Google Scholar 

  5. Ashcroft, N.W.: Hydrogen dominant metallic alloys: High temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004)

    Article  ADS  Google Scholar 

  6. Li, Y., Hao, J., Liu, H., Li, Y., Ma, Y.: The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014)

    Article  ADS  Google Scholar 

  7. Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015)

    Article  ADS  Google Scholar 

  8. Duan, D., Liu, Y., Tian, F., Li, D., Huang, X., Zhao, Z., Yu, H., Liu, B., Tian, W., Cui, T.: Sci. Rep. 4, 6968 (2014)

    Article  ADS  Google Scholar 

  9. Einaga, M., Sakata, M., Ishikawa, T., Shimizu, K., Eremets, M.I., Drozdov, A.P., Troyan, I.A., Hirao, N., Ohishi, Y.: Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016)

    Article  Google Scholar 

  10. Tallon, J.L., Storey, J.G., Loram, J.W.: Fluctuations and critical temperature reduction in cuprate superconductors. Phys. Rev. B 83, 092502 (2011)

    Article  ADS  Google Scholar 

  11. Shibauchi, T., Carrington, A., Matsuda, Y.: quantum critical point lying beneath the superconducting dome in iron pnictides. Annu. Rev. Condens. Matter Phys. 5, 113–135 (2014)

    Article  ADS  Google Scholar 

  12. Knebel, G., Aoki, D., Braithwaite, D., Salce, B., Flouquet, J.: Coexistence of antiferromagnetism and superconductivity in CeRhIn5 under high pressure and magnetic field. Phys. Rev. B 74, 020501 (2006)

    Article  ADS  Google Scholar 

  13. Morosan, E., Zandbergen, H.W., Dennis, B.S., Bos, J.W.G., Onose, Y., Klimczuk, T., Ramirez, A.P., Ong, N.P., Cava, R.J.: Superconductivity in Cu x TiSe2. Nat. Phys. 2, 544–550 (2006)

    Article  Google Scholar 

  14. Goh, S.K., Tompsett, D.A., Saines, P.J., Chang, H.C., Matsumoto, T., Imai, M., Yoshimura, K., Grosche, F.M.: F.M. Ambient pressure structural quantum critical point in the phase diagram of (Ca x Sr1x )3Rh4Sn13. Phys. Rev. Lett. 114, 097002 (2015)

    Article  ADS  Google Scholar 

  15. Tallon, J.L., Barber, F., Storey, J.G., Loram, J.W.: Coexistence of the superconducting energy gap and pseudogap above and below the transition temperature of cuprate superconductors. Phys. Rev. B 87, 140508(R) (2013)

    Article  ADS  Google Scholar 

  16. Storey, J.G.: Incoherent superconductivity well above T c in high- T c cuprates - harmonizing the spectroscopic and thermodynamic data. New J. Phys. 19, 073026 (2017)

    Article  ADS  Google Scholar 

  17. Jacobs, T. h., Katterwe, S.O., Krasnov, V.M.: Superconducting correlations above T c in the pseudogap state of Bi2Sr2CaCu2 O 8 + δ cuprates revealed by angular-dependent magnetotunneling. Phys. Rev. B 94, 220501(R) (2016)

    Article  ADS  Google Scholar 

  18. Larkin, A., Varlamov, A.: Theory of Fluctuations in Superconductors, p 230. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  19. Poole, C.P., Farach, H.A., Creswick, R.J., Prozorov, R.: Superconductivity, p 343. Academic Press, London (2007)

    Google Scholar 

  20. Talantsev, E.F., Crump, W.P., Storey, J.G., Tallon, J.L.: London penetration depth and thermal fluctuations in the sulphur hydride 203 K superconductor. Ann. Phys. (Berlin) 529, 1600390 (2017)

    Article  ADS  Google Scholar 

  21. Emery, V.J., Kivelson, S.A.: Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  Google Scholar 

  22. Bulaevskii, L.N., Ginzburg, V.L., Sobyanin, A.A.: Macroscopic theory of superconductors with small coherence length. Phys. C 152, 378–388 (1988)

    Article  ADS  Google Scholar 

  23. Uemura, Y.J. et al.: Basic similarities among cuprate, bismuthate, organic, Chevrel-phase, and heavy-fermion superconductors shown by penetration-depth measurements. Phys. Rev. Lett. 66, 2665–2668 (1991)

    Article  ADS  Google Scholar 

  24. Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Temperature and purity dependence of the superconducting critical field, H c2. III. Electron spin and spin-orbit effects. Phys. Rev. 147, 295–302 (1966)

    Article  ADS  Google Scholar 

  25. Talantsev, E.F., Tallon, J.L.: Universal self-field critical current for thin-film superconductors. Nature Comms. 6, 7820–7827 (2015)

    Article  ADS  Google Scholar 

  26. Talantsev, E.F., Crump, W.P., Tallon, J.L.: Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents. Ann. Physik 529, 1700197 (2017)

    Article  ADS  Google Scholar 

  27. Talantsev, E.F., Crump, W.P., Island, J.O., Xing, Y., Sun, Y., Wang, J., Tallon, J.L.: On the origin of critical temperature enhancement in atomically thin superconductors. 2D Mater. 4, 025072 (2017)

    Article  Google Scholar 

  28. Talantsev, E.F., Crump, W.P., Tallon, J.L.: Universal scaling of the self-field critical current in superconductors: from sub-nanometre to millimetre size. Sci. Rep. 7, 10010 (2017)

    Article  ADS  Google Scholar 

  29. Pearl, J.: Current distribution in superconducting films carrying quantized fluxoids. Appl. Phys. Lett. 5, 65–66 (1964)

    Article  ADS  Google Scholar 

  30. Rhoderick, E.H., Wilson, E.M.: Current distribution in thin superconducting films. Nature 194, 1167–1168 (1962)

    Article  ADS  Google Scholar 

  31. Bean, C.P.: Magnetization of high-field superconductors. Rev. Mod. Phys. 36, 31–39 (1964)

    Article  ADS  Google Scholar 

  32. Johansen, T.H., Bratsberg, H.J.: Critical-state magnetization of type-II superconductors in rectangular slab and cylindrical geometries. Appl. Phys. 77, 3945–3952 (1995)

    Article  Google Scholar 

  33. Grasso, G., Cimberle, M.R., Ferdeghini, C., Siri, A.S.: Temperature dependence of the intragrain critical current density in polycrystalline Ag-sheathed Bi(2223) tapes. IEEE Trans. Appl. Supercond. 9, 2667–2670 (1999)

    Article  Google Scholar 

  34. Cichorek, T., Mota, A.C., Steglich, F., Frederick, N.A., Yuhasz, W.M., Maple, M.B.: Pronounced enhancement of the lower critical field and critical current deep in the superconducting state of PrOs4,Sb12. Phys. Rev. Lett. 94, 107002 (2005)

    Article  ADS  Google Scholar 

  35. Tai, M.F., Chang, G.F., Lee, M.W.: Vortex-lattice melting in superconducting fullerene Rb3 C 60. Phys. Rev B 52, 1176–1180 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JLT and EFT separately thank the Marsden Fund of New Zealand for financial support (JLT: grant number VUW1322, EFT: grant number VUW1608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffery L. Tallon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallon, J., Talantsev, E. Compressed H3S, Superfluid Density and the Quest for Room-Temperature Superconductivity. J Supercond Nov Magn 31, 619–624 (2018). https://doi.org/10.1007/s10948-017-4419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4419-4

Keywords

Navigation