Skip to main content
Log in

Several Theoretical Perspectives of Ferrite-Based Materials—Part 1: Transmission Line Theory and Microwave Absorption

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A theoretical model for microwave absorption from both forced non-resonance oscillation and resonance is constructed using the transmission line theory familiar to microwave engineers. The model covers both the single-phase ferrite and its composites of interest to material scientists, and can be applied to a variety of different absorption mechanisms. The transmission line theory is also shown to be consistent with the band theory of solids, a relationship that has not been revealed previously. The work bridges the gap between the interests of microwave engineers and material scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pullar, R.C.: Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012)

    Article  Google Scholar 

  2. Li, S., Akyel, C., Bosisio, R.G.: Precise calculations and measurements on the complex dielectric constant of lossy materials using TM010 cavityperturbation techniques. IEEE Trans. Microw. Theory Tech. MTT-29(10), 1041–1048 (1981)

    ADS  Google Scholar 

  3. Liu, Y., Tai, R., Drew, M.G.B., Liu, Y.: Preparation and characterizations of active carbon/barium ferrite/polypyrrole composites. J. Mater. Sci. Mater. Electron. (2017). doi:10.1007/s10854-017-6330-y

  4. Liu, Y., Jin, J., Drew, M.G.B., Liu, Y.: Several theoretical perspectives of ferrite based materials—part 2: close packing model for crystal structure. J. Supercond. Nov. Magn. (2017). doi: doi:10.1007/s10948-017-4042-4

  5. Liu, Y., Liu, Y., Yin., H., Drew, M.G.B.: Several theoretical perspectives of ferrite based materials—part 3: crystal structure and synthesis. J. Supercond. Nov. Magn. (2017). doi:10.1007/s10948-017-4040-6

  6. Harris, V.G., Geiler, A., Chen, Y., Yoon, S.D., Wu, M., Yang, A., Chen, Z., He, P., Parimi, P.V., Zuo, X., Patton, C.E., Abe, M., Acher, O., Vittoria, C.: Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  ADS  Google Scholar 

  7. Sadiq, I., Naseem, S., Rana, M.U., Ashiq, M.N., Ali, I.: Temperature dependent magnetic and microwave absorption properties of doubly substituted nanosized material. J. Magn. Magn. Mater. 385, 236–242 (2015)

    Article  ADS  Google Scholar 

  8. Jamalian, M., Ghasemi, A., Paimozd, E.: A comparison of the magnetic and microwave absorption properties of Mn-Sn-Ti substituted strontium ferrite with and without multiwalled carbon nanotube. Curr. Appl. Phys. 14, 909–915 (2014)

    Article  ADS  Google Scholar 

  9. Li, L., Xiang, C., Qian, H., Hao, B., Chen, K., Qiao, R.: J. Mater. Res. 26, 2683–2690 (2011)

    Article  ADS  Google Scholar 

  10. Hong, Y-K., Lee, J.: Ferrites for RF passive devices. Solid State Phys. 64, 237–329 (2013)

    Article  Google Scholar 

  11. Ozgur, U., Alivov, Y., Morkoc, H.: Microwave ferrites, part 1: fundamental properties. J. Mater. Sci.: Mater. Electron. 20, 789–834 (2009)

    Google Scholar 

  12. Ozgur, U., Alivov, Y., Morkoc, H.: Microwave ferrites, part 2: passive components and electrical Tuning. J. Mater. Sci.: Mater. Electron. 20, 911–952 (2009)

    Google Scholar 

  13. Baker-Jawis, J., Janezic, M. L. D., Grosvenor, J. H. Jr., Geyer, R. G.: Transmission/reflection and short-circuit line methods for measuring permittivity and permeability. Natl. Inst. Stand. Technol. Tech. Note 1355-R (1993)

  14. Vepsalainen, A., Chalapat, K., Paraoanu, G.S.: Measuring the microwave magnetic permeability of small samples using the short-circuit transmission line method. IEEE Trans. Instrum. Meas. 62(9), 2503–2510 (2013)

    Article  Google Scholar 

  15. Gairola, S.P., Verma, V., Singh, A., Purohit, L.P., Kotnal, R.K.: Modified composition of barium ferrite to act as a microwave absorber in X-band frequencies. Solid State Commun. 150, 147–151 (2010)

    Article  ADS  Google Scholar 

  16. Gupta, C.D.: Microwave measurement of a complex dielectric constant over a wide range of values by means of a waveguide-resonator method. IEEE Trans. Microw. Theory Tech. MTT-22(4), 365–372 (1974)

    Article  ADS  Google Scholar 

  17. Ligthart, L.P.: A fast computational technique for accurate permittivity determination using transmission line methods. IEEE Trans. Microw. Theory Tech. MTT-31(3), 249–254 (1983)

    Article  ADS  Google Scholar 

  18. Vepsalainen, A., Chalapat, K., Paraoanu, G.S.: Measuring the microwave magnetic permeability of small samples using the short-circuit transmission line method. IEEE Trans. Instrum. Meas. 62(9), 2503–2510 (2013)

    Article  Google Scholar 

  19. Hu, X.-P.: Using six-port reflectometer measurement of complex dielectric constant. IEEE Trans. Instrum. Meas. IM-36(2), 537–539 (1987)

    Article  ADS  Google Scholar 

  20. Kasten, J.S., Steer, M.B., Pomerleau, R.: Enhanced through-reflect-line characterization of two-port measuring systems using free-space capacitance calculation. IEEE Trans. Microw. Theory Tech. 3.8(2), 215–217 (1990)

    Article  ADS  Google Scholar 

  21. Rouss, G., Agbossou, K., Thiebaut, J.-M.: Improved modeling of permittivity measurement cells. IEEE Trans. Instrum. Meas. 41(3), 366–369 (1992)

    Article  Google Scholar 

  22. Nassar, E.M., Lee, R., Young, J.D.: A probe antenna for in situ measurement of the complex dielectric constant of materials. IEEE Trans. Antennas Propag. 47(6), 1085–1093 (1999)

    Article  ADS  Google Scholar 

  23. Weir, W.B.: Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62(1), 33–36 (1974)

    Article  Google Scholar 

  24. Meshram, M. R., Agrawal, N. K., Sinha, B., Misra, P. S.: Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004)

    Article  ADS  Google Scholar 

  25. Luo, J., Xu, Y., Gao, D.: Synthesis, characterization and microwave absorption properties of polyaniline/Sm-doped strontium ferrite nanocomposite. Solid State Sci. 37, 40–46 (2014)

    Article  ADS  Google Scholar 

  26. Blakney, T.L., Weir, W.B.: Comments on “Automatic measurement of complex dielectric constant and permeability at microwave frequencies”. Proc. IEEE 63(1), 203–205 (2005). doi:10.1109/PROC.1975.9725

    Article  Google Scholar 

  27. Chen, M., Chen, C.-C.: Improved permittivity calibration method for wideband in situ permittivity probe. IEEE Geosci. Remote Sens. Lett. 10(2), 323–327 (2013). doi:10.1109/LGRS.2012.2205366

    Article  ADS  Google Scholar 

  28. Suzuki, H., Hotchi, T., Nojima, T.: A new measurement system for the perpendicular complex permittivity to DUT sheet by stripline simulation. IEEE Trans. Instrum. Meas. 61(9), 2476–2482 (2012)

    Article  Google Scholar 

  29. Nicolson, A.M., Ross, G.F.: Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. IM-19(4), 377–382 (1970)

    Article  Google Scholar 

  30. Baker-Jawis, J., Vanzura, E.J., Kissick, W.A.: Improved technique for determining complex permittivity with the transmission /reflection method. IEEE Trans. Microw. Theory Tech. 38(8), 1096–1103 (1990)

    Article  ADS  Google Scholar 

  31. Vanzura, E.J., Baker-Jarvis, J.R., Grosvenor, J.H., Janezic, M.L.D.: , Intercomparison of permittivity measurements using the transmissiofleflection method in 7-mm coaxial transmission lines. IEEE Trans. Microw. Theory Tech. 42(11), 2063–2070 (1994)

    Article  ADS  Google Scholar 

  32. Blackham, D.V., Pollard, R.D.: An improved technique for perimittivity measurements using a coaxial probe. IEEE Trans. Instrum. Meas. 46(5), 1093–1099 (1997)

    Article  Google Scholar 

  33. Pozar, D.M.: Microwave Engineering, 2nd edn. Wiley, New York (1998)

    Google Scholar 

  34. Collier, R.J., Skinner, A.D.: Microwave Measurements, 3rd edn. Athenaeum Press, London (2007)

    Google Scholar 

  35. Kraus, J.D., Fleisch, D.A., Russ, S.H.: Electromagnetics with Applications, 5th edn, pp 62–211. Tsinghua University Press, Beijing (2001)

    Google Scholar 

  36. Liu, Y., Drew, M.G.B., Liu, Y., Liu, Y., Cao, F.L.: A comparative study of Fe3O4/polyaniline composites with octahedral and microspherical inorganic kernels. J. Mater. Sci. 49, 3694–3704 (2014)

    Article  ADS  Google Scholar 

  37. Liu, Y., Li, X., Drew, M.G.B., Liu, Y.: Increasing microwave absorption efficiency in ferrite based materials by doping with lead and forming composites. Mater. Chem. Phys. 162, 677–685 (2015)

    Article  Google Scholar 

  38. Kurokawa, K.: An Introduction to the Theory of Microwave Circuits. Academic Press, New York (1989)

    Google Scholar 

  39. Guru, B.S., Hiziroglu, H.R.: Electromagnetic Field Theory Fundamentals. China Machine Press, Beijing (2002)

    Google Scholar 

  40. Gonzalez, G.: Microwave Transistor Amplifiers, Analysis and Design, 2nd edn. Prentice Hall, New Jersey (1984)

    Google Scholar 

  41. Grosso, G., Parravicini, G.P.: Solid State Physics. Academic Press, Amsterdam (1999)

    Google Scholar 

  42. Liu, Y., Liu, Y., Drew, M.G.B.: Correlation between Fourier series expansion and Hückel orbital theory. J. Math. Chem. 51, 503–531 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Patterson, J.D., Bailey, B.C.: Solid-State Physics, Introduction to the Theory, pp 148–157. Springer, Berlin (2007)

    Google Scholar 

  44. Liu, Y., Drew, M.G.B., Liu, Y.: Intermediate ion stability and regio selectivity polymerization using neutral salicyladiminato in propene nickel(II) and palladium(II) complexes as catalysts. J. Mol. Struct. (Theochem) 809(1–3), 29–37 (2007)

    Article  Google Scholar 

  45. Liu, Y., Liu, Y., Drew, M.G.B.: Aspects of quantum mechanics clarified by lateral thinking. Chem. Educator 16, 272–274 (2011) http://chemeducator.org/bibs/0016001/16110272.htm

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Education Ministry of Liaoning Province (L2015497) and the Natural Science Foundation of Liaoning Province (2015020233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Appendices

Appendix: Applications of Bloch’s Theorem

A.1 One Band

A wave function in a crystal must obey Bloch’s theorem (136).

$$ \psi ({\mathrm {\mathbf r}})=e^{j{\mathrm{\mathbf{k}}}\cdot {\mathrm{\mathbf{r}}}}u({\mathrm{\mathbf r}}) $$
(136)

u(r) in (136) is a periodic function regarding symmetry operations in a crystal. Vector r specifies the position of the electron in the orbital. The direction of vector k defines a translation in the crystal and its value related to energy of the orbital is often written in the form 2 π/ λ where λ is the wavelength. This k also appears in (133) for a one-dimensional crystal. Bloch’s theorem (136) is related to phase shift represented by (121), which means that a translation symmetry operation on a well-behaved function in a crystal generates a phase shift for the function.

If every atom in a one-dimensional crystal separated by a distance of |a| contributes an atomic orbital φ to a well-behaved crystal wave function ψ, then (137) is a crystal wave function that satisfies Bloch’s theorem and this is proved from (138)–(139).

$$ \psi (\mathrm{\mathbf{r}})=\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{j{\mathrm {\mathbf k}}\cdot n{\mathrm{\mathbf a}}}} \varphi ({\mathrm{\mathbf r}}-n{\mathrm{\mathbf a}}) $$
(137)

N is the number of atoms in a complex unit cell. Vector r originates from one of the atoms. It represents the position of an electron and the origin is translated from one atom to another in (137) [42]. (137) can be rewritten in the form of (136).

$$ \begin{array}{l} \psi ({\mathrm {\mathbf r}})=\frac{1}{\sqrt N }e^{j{\mathrm {\mathbf k}}\cdot {\mathrm {\mathbf r}}}\sum\limits_{n=0}^{N-1} {e^{-j{\mathrm {\mathbf k}}\cdot {\mathrm {\mathbf r}}}e^{j{\mathrm {\mathbf k}}\cdot n{\mathrm {\mathbf a}}}} \varphi ({\mathrm {\mathbf r}}-n{\mathrm {\mathbf a}}) \\ =e^{j{\mathrm {\mathbf k}}\cdot {\mathrm {\mathbf r}}}u({\mathrm {\mathbf r}}) \\ \end{array} $$
(138)

u(r) in (138) is a periodic function proved by (139) involving any translation operation m a.

$$ \begin{array}{l} u({\mathrm {\mathbf r}}-m{\mathrm {\mathbf a}})=\frac{1}{\sqrt N }\sum\limits_{n{=}0}^{N-1} {e^{-j{\mathrm {\mathbf k}}\cdot ({\mathrm {\mathbf r}}-m{\mathrm {\mathbf a}})}e^{j{\mathrm {\mathbf k}}\cdot n{\mathrm {\mathbf a}}}} \varphi [({\mathrm {\mathbf r}}-m{\mathrm {\mathbf a}})-n{\mathrm {\mathbf a}}] \\ =\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{-j{\mathrm {\mathbf k}}\cdot [{\mathrm {\mathbf r}}-(m+n){\mathrm {\mathbf a}}]}} \varphi [{\mathrm {\mathbf r}}-(m+n){\mathrm {\mathbf a}}] \\ =\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{-j{\mathrm {\mathbf k}}\cdot [{\mathrm {\mathbf r}}-n'(m,n){\mathrm {\mathbf a}}]}} \varphi [{\mathrm {\mathbf r}}-n^{\prime} (m,n){\mathrm {\mathbf a}}]=u({\mathrm {\mathbf r}}) \\ \end{array} $$
(139)

Equation (139) is valid because when n is summed over all the N atoms in the complex cell, \(n^{\prime } \) can similarly be summed in an equivalent cell. If

$$ \int\limits_V {\varphi \ast } ({\mathrm {\mathbf r}}-n^{\prime} {\mathbf{a}})\hat{H}\varphi ({\mathbf{r}}-n{\mathbf{a}})d\tau =\left\{ {{\begin{array}{*{20}c} {\alpha,} & {n^{\prime} =n} \\ {\beta,}& {n^{\prime} =n\pm 1} \\ {0,} & {\text{otherwise}} \\ \end{array}}} \right. $$
(140)

Then, the energy of the crystal orbital will be

$$\begin{array}{@{}rcl@{}} &&E_{C} =\displaystyle\int\limits_{V} \psi ({\mathrm {\mathbf r}})\hat{H} \psi ({{\mathbf r}})d\tau =\frac{1}{N}\sum\limits_{{n}^{\prime} ,n} e^{j| \mathbf{k}|(n^{\prime}-n)| \mathbf{a} |}\\ &&\displaystyle\int\limits_{V} {\varphi\ast} ({\mathbf{r}}-n^{\prime} {\mathbf{a}})\hat{H} \varphi ({\mathbf{r}}-n {\mathbf{a}})d\tau =\frac{1}{N}\sum\limits_{n} \alpha\\ && \!\!+\frac{1}{N}\sum\limits_{n} {\beta (e^{j| {\mathbf{k}} || {\mathbf{a}} |}\!+e^{-j| {\mathbf{k}}|| {\mathbf{a}} |})} =\alpha \!+2\beta \cos (| {\mathbf{k}}| |\mathbf{a}|) \end{array} $$
(141)

When |k| takes the value from 0 to π/|a|, an energy band from (α + 2β) to (α − 2β) is created.

A.2 Two Bands

The theorem for two bands can be easily explained by reference to trans-polythene (Fig. 8). If each of the atoms from trans-polythene [44] contributes one atomic orbital (φ 1 or φ 2) to a crystal orbital, then the crystal-adapted orbitals (ϕ12) for the two sets of atoms shown by Fig. 1 can be written in a form similar to (137).

$$\begin{array}{@{}rcl@{}} \phi_{1} ({\mathrm {\mathbf r}})&=&\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{jk(n\left| {{\mathrm {\mathbf a}}} \right|-d/2)}} \varphi_{1} [({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2})-n{\mathrm {\mathbf a}}]\\ &=&\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{jk(n\left| {{\mathrm {\mathbf a}}} \right|-d/2)}} \varphi_{1} ({\mathrm {\mathbf r}}_{1} -n{\mathrm {\mathbf a}}) \end{array} $$
(142)
$$\begin{array}{@{}rcl@{}} \phi_{2} ({\mathrm {\mathbf r}})&=&\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{jk(n\left| {{\mathrm {\mathbf a}}} \right|+d/2)}} \varphi_{2} [({\mathrm {\mathbf r}}-\frac{{\mathrm {\mathbf b}}}{2})-n{\mathrm {\mathbf a}}]\\&=&\frac{1}{\sqrt N }\sum\limits_{n=0}^{N-1} {e^{jk(n\left| {{\mathrm {\mathbf a}}} \right|+d/2)}} \varphi_{2} ({\mathrm {\mathbf r}}_{2} -n{\mathrm {\mathbf a}}) \end{array} $$
(143)
Fig. 8
figure 8

A segment of trans-polythene as a model for a one-dimensional crystal. b is the vector between the two atoms indicated. There are two sets of carbon atoms indicated by 1 and 2. In each set, the atoms are separated by |a|

The origin for r is at the middle of a double bond. A crystal-adapted orbital is an orbital conforming to Bloch’s theorem. Crystal orbitals ψ are obtained from crystal-adapted orbitals [45].

$$ \psi ({\mathrm {\mathbf r}})=\frac{1}{\sqrt 2 }[c_{1} \phi_{1} ({\mathrm {\mathbf r}})+c_{2} \phi_{1} ({\mathrm {\mathbf r}})] $$
(144)
$$ \hat{H}\psi ({\mathrm {\mathbf r}})=E_{C} \psi ({\mathrm {\mathbf r}}) $$
(145)

The energy of the crystal orbitals can be obtained by inserting (144) into (145).

$$ \left| {{\begin{array}{*{20}c} {H_{11} -E_{C} S_{11} } & \;\;{H_{12} -E_{C} S_{12} } \\ {H_{21} -E_{C} S_{21} } & \;\;{H_{22} -E_{C} S_{22} } \\ \end{array} }} \right|=0 $$
(146)

The evaluation can be simplified by the following assumptions with the same principle from (140).

$$\begin{array}{@{}rcl@{}} S_{11} &=&\displaystyle\int\limits_V {\phi_{1}^{\ast } } ({\mathrm {\mathbf r}})\phi_{1} ({\mathrm {\mathbf r}})d\tau =\frac{1}{N}\sum\limits_{n^{\prime} ,n} e^{jk(n-n^{\prime} )\left| {{\mathrm {\mathbf a}}} \right|}\\ &&{\kern-2.5pc} \displaystyle\int\limits_V {\varphi_{1}^{\ast } } ({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2}-n^{\prime} {\mathrm {\mathbf a}})\varphi_{1} ({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2}-n{\mathbf{a}})d\tau =1=S_{22} \end{array} $$
(147)
$$\begin{array}{@{}rcl@{}} S_{12} &=&\frac{1}{N}e^{jkd}\sum\limits_{n^{\prime} ,n} e^{jk(n-n^{\prime} )\left| {{\mathrm {\mathbf a}}} \right|}\\ &&{\kern-2.5pc} \int\limits_V {\varphi_{1}^{\ast } } ({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2}-n^{\prime} {\mathrm {\mathbf a}})\varphi_{2} ({\mathrm {\mathbf r}}-\frac{{\mathrm {\mathbf b}}}{2}-n{\mathrm {\mathbf a}})d\tau =0=S_{21}^{\ast} \end{array} $$
(148)
$$\begin{array}{@{}rcl@{}} H_{11} &=&\displaystyle\int\limits_{V} {\phi_{1}^{\ast } } ({\mathrm {\mathbf r}})\hat{H} \phi_{1} ({\mathbf{r}})d\tau =\frac{1}{N}\sum\limits_{n^{\prime} ,n} e^{jk(n-n^{\prime} )\left| \mathbf{a} \right|}\\ &&{\kern-2.7pc} \displaystyle\int\limits_V {\varphi_{1}^{\ast } } ({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2}-n^{\prime} {\mathrm {\mathbf a}})\hat{H} \varphi_{1} ({\mathrm {\mathbf r}}+\frac{{\mathbf{b}}}{2}-n{\mathrm {\mathbf a}})d\tau =\alpha =H_{22}\\ \end{array} $$
(149)
$$\begin{array}{@{}rcl@{}} H_{12} &=&\frac{1}{N}e^{jkd}\sum\limits_{n^{\prime} ,n}e^{jk(n-n^{\prime} )\left| {{\mathrm {\mathbf a}}} \right|}\\ &&{\kern-2.7pc} \displaystyle\int\limits_V {\varphi_{1}^{\ast } } ({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2}-n^{\prime} {\mathrm {\mathbf a}})\hat{H} \varphi _{2} ({\mathrm {\mathbf r}}-\frac{{\mathrm {\mathbf b}}}{2}-n{\mathrm {\mathbf a}})d\tau\\ &&{\kern-2.8pc} =e^{jkd}(\beta +\beta^{\prime} e^{-jk\left| {{\mathrm {\mathbf a}}} \right|}) \end{array} $$
(150)
$$\begin{array}{@{}rcl@{}} H_{21}&=&\frac{1}{N}e^{-jkd}\sum\limits_{n^{\prime} ,n} e^{jk(n-n^{\prime} )\left| {{\mathrm {\mathbf a}}} \right|}\\ &&{\kern-2.7pc} \displaystyle\int\limits_V {\varphi_{2}^{\ast } } ({\mathrm {\mathbf r}}-\frac{{\mathrm {\mathbf b}}}{2}-n^{\prime} {\mathrm {\mathbf a}})\hat{H} \varphi_{1} ({\mathrm {\mathbf r}}+\frac{{\mathrm {\mathbf b}}}{2}-n{\mathrm {\mathbf a}})d\tau \\ &&{\kern-2.8pc} =e^{-jkd}(\beta +\beta^{\prime} e^{jk\left| {{\mathrm {\mathbf a}}} \right|})=H_{12}^{\ast } \end{array} $$
(151)

The parameters β and \(\beta ^{\prime } \) are specific for the double and single bonds in the polythene, respectively. By inserting (147)–(151) into (146), the energy for the crystal orbital is obtained as shown by (153).

$$ \left|\begin{array}{ll} {\kern2pc} {\alpha -E_{C}} &{e^{jkd}(\beta +\beta^{\prime} e^{-jk\left| {{\mathrm {\mathbf a}}} \right|})} \\ {e^{-jkd}(\beta +\beta^{\prime} e^{jk\left| {{\mathrm {\mathbf a}}} \right|})} & {{\kern2pc} \alpha -E_{C} } \\ \end{array} \right|=0 $$
(152)
$$ E_{C} =\alpha \pm [{\beta}^{2}+{\beta^{\prime}}^{2}+2{\beta\beta}^{\prime}\cos (k\left| {\mathbf{a}}\right|)]^{1/2} $$
(153)

Two energy bands are obtained by varying k from 0 to π/|a|. If all the C–C bond lengths in the polythene are the same, then \(\beta = \beta ^{\prime }\) and there will be no energy gap between the bands, thus, the polymer is a conductor. However, if the double and single bonds are distinct with different bond lengths then the upper energy boundary of the lower band will be lowered from α to (\(\alpha - | {\beta } -{\beta }^{\prime }|\)) while the lower energy boundary for the upper band will be raised from the α to (\(\alpha + ~| {\beta } - {\beta }^{\prime } |\)). Thus, there is an energy gap of \(2|\beta - \beta ^{\prime }|\) between the two bands at k = π/|a| and the polymer is a semiconductor. Note the upper band is vacant while the lower band is filled with electrons for this neutral polymer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tai, R., Drew, M.G.B. et al. Several Theoretical Perspectives of Ferrite-Based Materials—Part 1: Transmission Line Theory and Microwave Absorption. J Supercond Nov Magn 30, 2489–2504 (2017). https://doi.org/10.1007/s10948-017-4043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4043-3

Keywords

Navigation