Skip to main content
Log in

A 3-D Numerical Model to Estimate the Critical Current in MgB2 Wire and Cable with Twisted Structure

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Due to the low material cost, high critical transition temperature and high-current-carrying capacity, MgB2 round wire with twisted filaments has great potential for applications in engineering. Therefore, it is important to estimate their critical current for optimizing and realizing high-powered wire and cable. A 3-D model is presented to calculate the critical current of wire and cable with twisted filaments. The critical current is estimated based on the Biot-Savart law and self-consistent model. A comparison between 2-D and 3-D models is performed for the wire. We consider the effect of twist pitch on the critical current. Moreover, the critical current of 6-around-1 cable with different twist pitches is analyzed and discussed using the 3-D model. It can be found that twist pitch of filaments plays an important role on the critical current. The model and method may also be useful for other superconducting wires and cables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature 410, 63 (2001)

    Article  ADS  Google Scholar 

  2. Grant, P.M.: Mater. Res. Soc. Symp. Proc. 689, 3–9 (2001)

    Article  Google Scholar 

  3. Grilli, F., Chervyakov, A., Zermeno, V., Marian, A., Grasso, G., Goldacker, W., Rubbia, C.: Phys. C. 504, 167–171 (2014)

    Article  ADS  Google Scholar 

  4. Vinod, K., Kumar, R.G.A., Syamaprasad, U.: Supercond. Sci. Technol. 20, R1–R13(13) (2006)

    Article  Google Scholar 

  5. Kováč, P., Hušek, I., Pachla, W., Kulczyk, M., Melišek, T., Dvorák, T.: J. Alloys Compd. 509, 8783–8787 (2011)

    Article  Google Scholar 

  6. Holúbek, T., Schlachter, S.I., Goldacker, W.: Supercond. Sci. Technol. 22, 32–32 (2009)

    Article  Google Scholar 

  7. Tanaka, K., Okada, M., Kumakura, H., Kitaguchi, H., Togano, K.: Phys. C. 382, 203–206 (2002)

    Article  ADS  Google Scholar 

  8. Musenich, R., Greco, M., Razeti, M., Tavilla, G.: Supercond. Sci. Technol. 20, 83–86 (2007)

    Article  Google Scholar 

  9. Kumakura, H., Matsumoto, A., Fujii, H., Togano, K.: Appl. Phys. Lett. 79, 2435 (2001)

    Article  ADS  Google Scholar 

  10. Canfield, P.C., Finnemore, D.K., Bud’Ko, S.L., Ostenson, J.E., Lapertot, G., Cunningham, C.E., Petrovic, C.: Phys. Rev. Lett. 86, 2423–2426 (2001)

    Article  ADS  Google Scholar 

  11. Kovác, P., Husek, I., Melisek, T., Martínez, E., Dhalle, M.: Supercond. Sci. Technol. 19, 1076–1082 (2006)

    Article  ADS  Google Scholar 

  12. Lezza, P., Senatore, C., Flukiger, R.: Supercond. Sci. Technol. 19, 1030–1033 (2006)

    Article  ADS  Google Scholar 

  13. Kim, J.H., Oh, S., Heo, Y.U., Hata, S., Kumakura, H., Matsumoto, A., Mitsuhara, M., Choi, S., Shimada, Y., Maeda, M.: NPG Asia Mater. 4, e3 (2011)

    Article  Google Scholar 

  14. Herrmann, M., Haessler, W., Rodig, C., Gruner, W., Holzapfel, B., Schultz, L.: Appl. Phys. Lett. 91, 082507 (2007)

    Article  ADS  Google Scholar 

  15. Ma, Y., Zhang, X., Nishijima, G., Watanabe, K., Awaji, S., Bai, X.: Appl. Phys. Lett. 88, 072502 (2006)

    Article  ADS  Google Scholar 

  16. Sugimoto, M., Kimura, A., Mimura, M., Tanaka, Y., Ishii, H., Honjo, S., Iwata, Y.: Phys. C. 279, 225–232 (1997)

    Article  ADS  Google Scholar 

  17. Oomen, M.P., Rieger, J., Leghissa, M., Kate, H.H.J.T.: Phys. C. 290, 281–290 (1997)

    Article  ADS  Google Scholar 

  18. Sugimoto, M., Takagi, A., Mimura, M., Honjo, S., Mimura, T., Iwata, Y.: Phys. C. 328, 177–188 (1999)

    Article  ADS  Google Scholar 

  19. Kováč, P., Hušek, I., Melišek, T., Kopera, L.: Supercond. Sci. Technol. 24, 115006 (2011)

    Article  ADS  Google Scholar 

  20. Grilli, F., Brambilla, R., Sirois, F., Stenvall, A., Memiaghe, S.: Cryogenics. 53, 142–147 (2013)

    Article  ADS  Google Scholar 

  21. Zhang, M., Coombs, T.A.: Supercond. Sci. Technol. 25, 015009 (2011)

    Article  ADS  Google Scholar 

  22. Xia, J., Bai, H., Lu, J., Gavrilin, A.V., Zhou, Y., Weijers, H.W.: Supercond. Sci. Technol. 28, 125004 (2015)

    Article  ADS  Google Scholar 

  23. Hong, Z., Ye, L., Majoros, M., Campbell, A.M., Coombs, T.A.: J. Supercond. Novel Magn. 21, 205–211 (2008)

    Article  Google Scholar 

  24. Escamez, G., Sirois, F., Lahtinen, V., Stenvall, A.: IEEE Trans. Appl. Supercond. 26, 1–7 (2016)

    Article  Google Scholar 

  25. Zermeño, V.M.R., Sirois, F., Takayasu, M., Vojenčiak, M., Kario, A., Grilli, F.: Supercond. Sci. Technol. 28, 085004 (2015)

    Article  ADS  Google Scholar 

  26. Vargas-Llanos, C.R., Zermeño, V.M.R., Trillaud, F., Grilli, F.: Supercond. Sci. Technol. 29, 034008 (2016)

    Article  ADS  Google Scholar 

  27. Liu, D., Yong, H., Zhou, Y.: J. Supercond. Novel Magn. 29, 2299–2309 (2016)

    Article  Google Scholar 

  28. Liu, D., Xia, J., Yong, H., Zhou, Y.: Supercond. Sci. Technol. 29, 065020 (2016)

    Article  ADS  Google Scholar 

  29. Xiang, L., Wang, H.Y., Chen, Y., Guan, Y.J., Wang, Y.L., Dai, L.H.: Int. J. Solids. Struct. 58, 212–231 (2015)

    Article  Google Scholar 

  30. Grilli, F., Kario, A.: Supercond. Sci. Technol. 29, 083002 (2016)

    Article  ADS  Google Scholar 

  31. Zermeño, V.M.R., Quaiyum, S., Grilli, F.: IEEE Trans. Appl. Supercond. 26, 1–7 (2016)

    Article  Google Scholar 

  32. Rhyner, J.: Phys. C. 212, 292–300 (1993)

    Article  ADS  Google Scholar 

  33. Rostila, L., Grasso, G., Demenčík, E., Tumino, A., Brisigotti, S., Kováč, P.: J. Phys.: Conf. Ser. 234, 022029 (2010)

    Google Scholar 

  34. Shen, T., Li, P., Jiang, J., Cooley, L., Tompkins, J., Mcrae, D., Walsh, R.: Supercond. Sci. Technol. 28, 065002 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the supports from the National Natural Science Foundation of China (nos. 11472120 and 11421062), the National Key Project of Magneto-Constrained Fusion Energy Development Program (no. 2013GB110002), the New Century Excellent Talents in University of the Ministry of Education of China (NCET-13-0266), and the National Key Project of Scientific Instrument and Equipment Development (11327802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huadong Yong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Yong, H. & Zhou, Y. A 3-D Numerical Model to Estimate the Critical Current in MgB2 Wire and Cable with Twisted Structure. J Supercond Nov Magn 30, 1757–1765 (2017). https://doi.org/10.1007/s10948-017-4017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4017-5

Keywords

Navigation