Skip to main content
Log in

Controlling the Magnetic Properties of Nickel Ferrites by Doping with Different Divalent Transition Metal (Co, Cu, and Zn) Cations

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ferrite samples with the compositional formula Ni0.95M0.05Fe1.95Al0.05O4 (M = Co2+, Cu2+, and Zn2+) were synthesized by the citrate sol–gel process to understand how doping with small amounts of different transition metal cations affects the magnetic properties. X-ray diffraction confirmed the existence of a single ferrite phase without detectable impurities. The Rietveld refinement showed that the samples crystallized in a cubic spinel structure with the Fd-3m space group. Scanning electron microscopy of the sintered samples revealed grain sizes of approximately 1 μm. The magnetic properties measured at room temperature using a vibrating sample magnetometer varied according to the dopant, which could be explained in terms of the site occupancy of the dopants in the cubic spinel lattice. The high field regimes of the hysteresis loops were modeled using the law of approach to saturation to determine the variation in the cubic anisotropy coefficients. These results highlight the possibility of controlling the magnetic properties through different transition metal cation substitutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smit, J., Wijn, H.P.J.: Ferrites. Philips Technical Library, The Netherlands (1959)

    Google Scholar 

  2. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhyay, K., Shinoda, K., Jeyadevan, B., Tohji, K., Nakatsuka, K., Furubayashi, T., Nakatani, I.: Phys. Rev. B 63, 184108 (2001)

    Article  ADS  Google Scholar 

  3. Harris, V.G., et al.: J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  ADS  Google Scholar 

  4. Pardavi-Horvath, M.: J. Magn. Magn. Mater. 215–216, 171–183 (2000)

    Article  Google Scholar 

  5. Rodrigue, G.P.: Proc. IEEE 76(2), 121–137 (1988)

  6. Visuanathan, B., Murthy, V.R.K.: Ferrites Materials Science and Technology. Narosa Publishing House, New Delhi, India (1990)

  7. Sattar, A.A., El-Sayed, H.M., El-Tabey, M.M.: J. Mater. Sci. 40, 4873–4879 (2005)

    Article  ADS  Google Scholar 

  8. Eltabey, M.M., El-Shokrofy, K.M., Gharbia, S.A.: J. Alloys Compd. 509, 2473–2477 (2011)

    Article  Google Scholar 

  9. Wahba, A.M., Aboulfotoh Ali, N., Eltabey, M.M.: Mater. Chem. Phys. 146, 224–229 (2014)

    Article  Google Scholar 

  10. Gabal, M.A., Obaid, A.Y., Abdel Salam, M., Bayoumy, W.A.: Mater. Res. Bull. 60, 433–440 (2014)

    Article  Google Scholar 

  11. Verma, S., Chand, J., Singh, M.: J. Alloys Compd. 587, 763–770 (2014)

    Article  Google Scholar 

  12. Patange, S.M., Shirsath, S.E., Lohar, K.S., Jadhav, S.S., Kulkarni, N., Jadhav, K.M.: Phys. B 406, 663–668 (2011)

    Article  ADS  Google Scholar 

  13. Mohit, K., Rani Gupta, V., Gupta, N., Rout, S.K.: Ceram. Int. 40, 1575–1586 (2014)

    Article  Google Scholar 

  14. Niu, Z.P., Wang, Y., Li, F.S.: J. Mater. Sci. 41, 5726–5730 (2006)

    Article  ADS  Google Scholar 

  15. Maaz, K., Karim, S., Lee, K.J., Jung, M.H., Kim, G.H.: Mater. Chem. Phys. 133, 1006–1010 (2012)

    Article  Google Scholar 

  16. Bayrakdar, H., Yalcin, O., Vural, S., Esmer, K.: J. Magn. Magn. Mater. 343, 86–91 (2013)

    Article  ADS  Google Scholar 

  17. Tangcharoen, T., Ruangphanit, A., Pecharapa, W.: Ceram. Int. 39, S239–S243 (2013)

    Article  Google Scholar 

  18. Ahmed, M.A., Mansour, S.F., Afifi, M.: J. Magn. Magn. Mater. 324, 4–10 (2012)

    Article  ADS  Google Scholar 

  19. Rais, A., Taibi, K., Addou, A., Zanoun, A., Al-Douri, Y.: Ceram. Int. 40, 14413–14419 (2014)

    Article  Google Scholar 

  20. Verma, A., Dube, D.C.: J. Am. Ceram. Soc. 88, 519–523 (2005)

    Article  Google Scholar 

  21. Shahane, G.S., Kumar, A., Arora, M., Pant, R.P., Lal, K.: J. Magn. Magn. Mater. 322, 1015–1019 (2010)

    Article  ADS  Google Scholar 

  22. Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: J. Magn. Magn. Mater. 333, 152–155 (2013)

    Article  ADS  Google Scholar 

  23. Nasir, S., Saleemi, A.S., Fatima-tuz-Zahra, Anis-ur-Rehman, A.: J. Alloys Compd. 572, 170–174 (2013)

    Article  Google Scholar 

  24. Thomas, J.J., Shinde, A.B., Krishna, P.S.R., Kalarikkal, N.: J. Alloys Compd. 546, 77–83 (2013)

    Article  Google Scholar 

  25. Raju, K., Venkataiah, G., Yoon, D.H.: Ceram. Int. 40, 9337–9344 (2014)

    Article  Google Scholar 

  26. Rodriguez, C.: Phys. B 192, 55–69 (1993)

    Article  ADS  Google Scholar 

  27. Krieble, K., Schaeffer, T., Paulsen, J.A., Ring, A.P., Lo, C.C.H., Snyder, J.E.: J. Appl. Phys. 97, 10F101 (2005)

    Article  Google Scholar 

  28. Brockman, F.G.: Phys. Rev. 77, 841–842 (1950)

    Article  ADS  Google Scholar 

  29. Hastzngs, J.M., Corliss, L.M.: Rev. Mod. Phys. 25, 114–119 (1953)

    Article  ADS  Google Scholar 

  30. Shannon, R.D.: Acta Cryst. A: Cryst. Phys. 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  31. Iwauchi, K.: Jpn. J. Appl. Phys. 10, 1520–1528 (1971)

    Article  ADS  Google Scholar 

  32. Sawatzky, G.A., Woude, F.V.D., Morrish, A.H.: Phys. Rev. 187, 747–757 (1969)

    Article  ADS  Google Scholar 

  33. Fontijn, W.F.J., Van Der Zaag, P.J, Meselaar, R.: J. Appl. Phys. 83, 6765–6767 (1998)

    Article  ADS  Google Scholar 

  34. Rosenberg, M., Deppe, P., Janssen, H.U., Brabers, V.A.M., Li, F.S., Dey, S.: J. Appl. Phys. 57, 3740–3742 (1985)

    Article  ADS  Google Scholar 

  35. Raju, K., Yoon, D.H.: J. Supercond. Nov. Magn. 27, 1285–1292 (2014)

    Article  Google Scholar 

  36. Zuo, X., Yang, A., Vittoria, C., Harris, V.G.: J. Appl. Phys. 99, 08M909 (2006)

    Article  Google Scholar 

  37. Yang, A., Chen, Z., Islam, S.M., Vittoria, C., Harris, V.G.: J. Appl. Phys. 103, 07E509 (2008)

    Google Scholar 

  38. Yafet, Y., Kittel, C.: Phys. Rev. 87, 290–294 (1952)

    Article  ADS  Google Scholar 

  39. Kulkarni, R.G., Panicker, V.G.: J. Mater. Sci. 19, 890–894 (1984)

    Article  ADS  Google Scholar 

  40. Hankare, P.P., Sankpal, U.B., Patil, R.P., Mulla, I.S., Sasikala, R., Tripathi, A.K., Garadkar, K.M.: J. Alloys Compd. 496, 256–260 (2010)

    Article  Google Scholar 

  41. Tachiki, M.: Prog. Theor. Phys. 23, 1055–1072 (1960)

    Article  ADS  Google Scholar 

  42. Okamura, T., Kozima, Y.: Phys. Rev. 86, 1040–1041 (1952)

    Article  ADS  Google Scholar 

  43. Herbst, J.F., Pinkerton, F.E.: Phys. Rev. B 57, 10733–10739 (1998)

    Article  ADS  Google Scholar 

  44. Isfahani, M.J.N, Fesharaki, M.J, Sepelak, V.: Ceram. Int. 39, 1163–1167 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, DH., Muksin & Raju, K. Controlling the Magnetic Properties of Nickel Ferrites by Doping with Different Divalent Transition Metal (Co, Cu, and Zn) Cations. J Supercond Nov Magn 29, 439–445 (2016). https://doi.org/10.1007/s10948-015-3276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3276-2

Keywords

Navigation