Skip to main content

Advertisement

Log in

Improved electrochemical performance of silicon monoxide anode materials prompted by macroporous carbon

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Silicon monoxide (SiO) shows great potential for application as anode materials for lithium-ion batteries on account of its large capacity, low-cost, ample reserves and environmental amity, but serious capacity reduction and low lithium-ion transfer rate during charging and discharging restrict its development. In this work, a new strategy for the preparation of SiO and Porous carbon (Pc) composite by freeze-drying is proposed. A firm and conjoint SiO@Pc framework provides adequate transmission channels for lithium ions and sufficient number of pores to allow electrolyte penetration. The fabricated SiO@Pc composite anode material delivers high capacity of 1020 mAh g−1 with ~ 80% capacity retention rate after 200 cycles. It also exhibits excellent rate performance, providing 634 mAh g−1 capacity remaining at a current density of 1000 mA g−1. In addition, the optimized lithium-ion kinetics were further revealed by electrochemical impedance spectroscopy and cyclic voltammetry. Our approach uses environmental amity and low-cost materials to provide new ideas for making high-performance energy devices through simple and doable preparation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.Y. Cao, F.H. Liang, W. Zhang, H.C. Liu, H. Liu, H.F. Zhang, J.J. Mao, Y.Y. Zhang, Y. Feng, X. Yao, M.Z. Ge, Y.X. Tang, Commercialization-driven electrodes design for lithium batteries: basic guidance, opportunities, and perspectives. Small 17, 2102233 (2021)

    Article  CAS  Google Scholar 

  2. L.M. Zhu, Z. Li, G.C. Ding, L.L. Xie, Y.X. Miao, X.Y. Cao, Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries. J. Mater. Sci. Technol. 89, 68–87 (2021)

    Article  CAS  Google Scholar 

  3. A. Manthiram, A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Li, J. Lu, Z.W. Chen, K. Amine, 30 Years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018)

    Article  CAS  Google Scholar 

  5. G.L. Zhu, C.Z. Zhao, J.Q. Huang, C. He, J. Zhang, S. Chen, L. Xu, H. Yuan, Q. Zhang, Fast charging lithium batteries: recent progress and future prospects. Small 15, 1805389 (2019)

    Article  CAS  Google Scholar 

  6. C. Hernandez-Rentero, V. Marangon, M. Olivares-Marin, V. Gomez-Serrano, A. Caballero, J. Morales, J. Hassoun, Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. J. Colloid interf. Sci. 573, 396–408 (2020)

    Article  CAS  Google Scholar 

  7. W.T. Yang, H.J. Ying, S.L. Zhang, R.G. Guo, J.L. Wang, W.Q. Han, Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochim. Acta 337, 135687 (2020)

    Article  CAS  Google Scholar 

  8. H.B. Shi, H. Zhang, X.X. Li, Y. Du, G.L. Hou, M.Q. Xiang, P.P. Lv, Q.S. Zhu, In situ fabrication of dual coating structured SiO/1D-C/a-C composite as high-performance lithium ion battery anode by fluidized bed chemical vapor deposition. Carbon 168, 113–124 (2020)

    Article  CAS  Google Scholar 

  9. S.G. He, S.M. Huang, S.F. Wang, I. Mizota, X. Liu, X.H. Hou, Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications, energ. Fuel 35, 944–964 (2020)

    Article  CAS  Google Scholar 

  10. S. Iwamura, H. Nishihara, T. Kyotani, Effect of buffer size around nanosilicon anode particles for lithium-ion batteries. J. Phys. Chem. C 116, 6004–6011 (2012)

    Article  CAS  Google Scholar 

  11. Y. Zhuo, H. Sun, M.H. Uddin, M.K.S. Barr, D. Wisser, P. Roßmann, J.D. Esper, S. Tymek, D. Döhler, W. Peukert, M. Hartmann, J. Bachmann, An additive-free silicon anode in nanotube morphology as a model lithium ion battery material. Electrochim. Acta 388, 138522 (2021)

    Article  CAS  Google Scholar 

  12. L.J. Ma, J.Q. Meng, Y. Pan, Y.J. Cheng, Q. Ji, X.X. Zuo, X.Y. Wang, J. Zhu, Y.G. Xia, Microporous binder for the silicon-based lithium-ion battery anode with exceptional rate capability and improved cyclic performance. Langmuir 36, 2003–2011 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. A. Sengupta, J. Chakraborty, Geometry and charging rate sensitively modulate surface stress-induced stress relaxation within cylindrical silicon anode particles in lithium-ion batteries. Acta Mech. 231, 999–1019 (2019)

    Article  Google Scholar 

  14. F. Sun, Z.Y. Tan, Z.G. Hu, J. Chen, J. Luo, X.L. Wu, G.A. Cheng, R. Zheng, Ultrathin silicon nanowires produced by a bi-metal-assisted chemical etching method for highly stable lithium-ion battery anodes. NANO 15, 2050076 (2020)

    Article  CAS  Google Scholar 

  15. S. Cho, W. Jung, G.Y. Jung, K. Eom, High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery. J. Power Sources 454, 227931 (2020)

    Article  CAS  Google Scholar 

  16. Y. Zhang, G.N. Guo, C. Chen, Y.C. Jiao, T.T. Li, X. Chen, Y.C. Yang, D. Yang, A. Dong, An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes. J. Power Sources 426, 116–123 (2019)

    Article  CAS  Google Scholar 

  17. L. Hu, W.M. Xia, R.H. Tang, R.Z. Hu, L.Z. Ouyang, T. Sun, H. Wang, Excellent cyclic and rate performances of SiO/C/Graphite composites as Li-ion battery anode. Front. Chem. 8, 388 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Xia, Y.R. Li, Z. Zhou, Y.F. Wu, N. Zhou, H.B. Zhang, X. Xiong, Improving the electrochemical properties of SiO@C anode for high-energy lithium ion battery by adding graphite through fluidization thermal chemical vapor deposition method. Ceram. Int. 45, 1950–1959 (2019)

    Article  Google Scholar 

  19. M.J. Jung, K.Y. Sheem, Y.S. Lee, SiO/Carbon complex produced by carbothermal reduction for the anode materials of high-performance lithium ion battery. J. Nanosci. Nanotechnol. 14, 2852–2858 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. T.H. Park, J.S. Yeo, S.M. Jang, J. Miyawaki, I. Mochida, S.H. Yoon, Synthesis of silicon monoxide-pyrolytic carbon-carbon nanofiber composites and their hybridization with natural graphite as a means of improving the anodic performance of lithium-ion batteries. Nanotechnology 23, 355601 (2012)

    Article  PubMed  CAS  Google Scholar 

  21. M. Xia, Y.R. Li, Y.F. Wu, H.B. Zhang, J.K. Yang, N. Zhou, Z. Zhou, X. Xiong, Improving the electrochemical properties of a SiO@C/graphite composite anode for high-energy lithium-ion batteries by adding lithium fluoride. Appl. Surf. Sci. 480, 410–418 (2019)

    Article  CAS  Google Scholar 

  22. J.L. Han, G.R. Chen, T.T. Yan, H.J. Liu, L.Y. Shi, Z.X. An, J.P. Zhang, D.S. Zhang, Creating graphene-like carbon layers on SiO anodes via a layer-by-layer strategy for lithium-ion battery. Chem. Eng. J. 347, 273–279 (2018)

    Article  CAS  Google Scholar 

  23. A. Veluchamy, C.H. Doh, D.H. Kim, J.H. Lee, D.J. Lee, K.H. Ha, H.M. Shin, B.S. Jin, H.S. Kim, S.I. Moon, C.W. Park, Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries. J. Power Sources 188, 574–577 (2009)

    Article  CAS  Google Scholar 

  24. C.H. Doh, H.M. Shin, D.H. Kim, Y.C. Ha, B.S. Jin, H.S. Kim, S.I. Moon, A. Veluchamy, Improved anode performance of thermally treated SiO/C composite with an organic solution mixture. Electrochem. Commun. 10, 233–237 (2008)

    Article  CAS  Google Scholar 

  25. K.W. Kim, H. Park, J.G. Lee, J. Kim, Y.U. Kim, J.H. Ryu, J.J. Kim, S.M. Oh, Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries. Electrochim. Acta 103, 226–230 (2013)

    Article  CAS  Google Scholar 

  26. M. Yamada, A. Ueda, K. Matsumoto, T. Ohzuku, Silicon-based negative electrode for high-capacity lithium-ion batteries: “SiO”-carbon composite. J. Electrochem. Soc. 158, A417–A421 (2011)

    Article  CAS  Google Scholar 

  27. W.R. Liu, Y.C. Yen, H.C. Wu, M. Winter, N.L. Wu, Nano-porous SiO/carbon composite anode for lithium-ion batteries. J. Appl. Electrochem. 39, 1643–1649 (2009)

    Article  CAS  Google Scholar 

  28. C.H. Doh, C.W. Park, H.M. Shin, D.H. Kim, Y.D. Chung, S.I. Moon, B.S. Jin, H.S. Kim, A. Veluchamy, A new SiO/C anode composition for lithium-ion battery. J. Power Sources 179, 367–370 (2008)

    Article  CAS  Google Scholar 

  29. J.H. Kim, H.J. Sohn, H. Kim, G. Jeong, W. Choi, Enhanced cycle performance of SiO–C composite anode for lithium-ion batteries. J. Power Sources 170, 456–459 (2007)

    Article  CAS  Google Scholar 

  30. Q. Si, K. Hanai, T. Ichikawa, M.B. Phillipps, A. Hirano, N. Imanishi, O. Yamamoto, Y. Takeda, Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries. J. Power Sources 196, 9774–9779 (2011)

    Article  CAS  Google Scholar 

  31. Y.R. Ren, J.N. Ding, N.Y. Yuan, S.Y. Jia, M.Z. Qu, Z.L. Yu, Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries. J. Solid State Electr. 16, 1453–1460 (2011)

    Article  CAS  Google Scholar 

  32. S. Fang, N. Li, T.Y. Zheng, Y.B. Fu, X.Y. Song, T. Zhang, S.P. Li, B. Wang, X.G. Zhang, G. Liu, Highly graphitized carbon coating on SiO with a π-π stacking precursor polymer for high performance lithium-ion batteries. Polymers- Basel 10, 610 (2018)

    Article  PubMed Central  CAS  Google Scholar 

  33. L.R. Shi, C.L. Pang, S.L. Chen, M.Z. Wang, K.X. Wang, Z.J. Tan, P. Gao, J.G. Ren, Y.Y. Huang, H.L. Peng, Z.F. Liu, Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes. Nano Lett. 17, 3681–3687 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Y.Z. Wang, X. Shao, H.Y. Xu, M. Xie, S.X. Deng, H. Wang, J.B. Liu, H. Yan, Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. J. Power Sources 226, 140–148 (2013)

    Article  CAS  Google Scholar 

  35. S.H. Lee, C.S. Yoon, K. Amine, Y.K. Sun, Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. J. Power Sources 234, 201–207 (2013)

    Article  CAS  Google Scholar 

  36. Y.S. Lee, K.S. Ryu, Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci. Rep. 7, 16617 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. P.P. Lv, H.L. Zhao, C.H. Gao, T.H. Zhang, X. Liu, Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim. Acta 152, 345–351 (2015)

    Article  CAS  Google Scholar 

  38. J.K. Lee, Jh. Lee, B.K. Kim, W.Y. Yoon, Electrochemical characteristics of diamond-like carbon/Cr double-layer coating on silicon monoxide-graphite composite anode for Li-ion batteries. Electrochim. Acta 127, 1–6 (2014)

    Article  CAS  Google Scholar 

  39. T. Xu, Q. Wang, J. Zhang, X.H. Xie, B.J. Xia, Green synthesis of dual carbon conductive network-encapsulated hollow SiOx spheres for superior lithium-ion batteries. ACS Appl. Mater. Inter. 11, 19959–19967 (2019)

    Article  CAS  Google Scholar 

  40. X.J. Feng, J. Yang, Q.W. Lu, J.L. Wang, Y. Nuli, Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys. Chem. Chem. Phys. 15, 14420–14426 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. C. Huang, A. Kim, D.J. Chung, E. Park, N.P. Young, K. Jurkschat, H. Kim, P.S. Grant, Multi-scale engineered Si/SiOx nanocomposite electrodes for lithium ion batteries using layer-by-layer spray deposition. Acs Appl. Mater. Inter. 10, 15624 (2018)

    Article  CAS  Google Scholar 

  42. X. Huang, M.Q. Li, Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries. Appl. Surf. Sci. 439, 336–342 (2018)

    Article  CAS  Google Scholar 

  43. L.Z. Qian, J.L. Lan, M.Y. Xue, Y.H. Yu, X.P. Yang, Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability. RSC Adv. 7, 36697–36704 (2017)

    Article  CAS  Google Scholar 

  44. K. Kim, H. Choi, J.H. Kim, Effect of carbon coating on nano-Si embedded SiOx-Al2O3 composites as lithium storage materials. Appl. Surf. Sci. 416, 527–535 (2017)

    Article  CAS  Google Scholar 

  45. D. Li, K.H. Seng, D.Q. Shi, Z.X. Chen, H.K. Liu, Z.P. Guo, A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries. J. Mater. Chem. A 1, 14115 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the funding from the National Natural Science Foundation of China (NSFC, Grant Nos. 11874282, 11604245, 11981240429), the Six Talent Peaks Project in Jiangsu Province (Grant No. 2019-XNY-074), and the Vice President Project of Industry-University-Research Cooperation in Science and Technology of Jiangsu Province (Grant No. BY2020675) and Young and middle-aged academic leader of “Qinglan Project” of universities in Jiangsu Province (2021), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX21_3472).

Author information

Authors and Affiliations

Authors

Contributions

XD: Ideas for design and fabrication, Project director, Writing—original draft, Writing—review & editing. HZ: Software, Preparation of samples, Data curation. NZ: Experimental measurement. XC: Experimental measurement. JX: Experimental measurement.

Corresponding author

Correspondence to Xuli Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ding, X., Zhang, N. et al. Improved electrochemical performance of silicon monoxide anode materials prompted by macroporous carbon. J Porous Mater 29, 1191–1198 (2022). https://doi.org/10.1007/s10934-022-01243-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01243-z

Keywords

Navigation