Skip to main content
Log in

Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Silicon monoxide/graphite/multi-walled carbon nanotubes (SiO/G/CNTs) material was prepared by ball milling followed by chemical vapor deposition method and characterized by X-ray diffraction, scanning electron microscopy (SEM), galvanostatic charge–discharge, and AC impedance spectroscopy, respectively. The results revealed that SiO/G/CNTs exhibited an initial specific discharge capacity of 790 mAh g−1 with a columbic efficiency of 65%. After 100 cycles, a high reversible capacity of 495 mAh g−1 is still retained. The improved electrochemical properties were due to beneficial SEI by the SEM and EIS results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Naji A, Willmann P, Billaud D (1998) Carbon 36:1347–1352

    Article  CAS  Google Scholar 

  2. Yamauchi Y, Hino T, Ohzeki K, Kubota Y, Deyama S (2005) Carbon 43:1334–1336

    Article  CAS  Google Scholar 

  3. Yoon SH, Park CW, Yang HJ, Korai Y, Mochida I, Baker RTK, Rodriguez NM (2004) Carbon 42:21–32

    Article  CAS  Google Scholar 

  4. Kim YJ, Lee HJ, Lee SW, Cho BW, Park CR (2005) Carbon 43:163–169

    Article  CAS  Google Scholar 

  5. Dimov N, Kugino S, Yoshio M (2003) Electrochim Acta 48:1579–1587

    Article  CAS  Google Scholar 

  6. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O (2002) Solid State Ionics 152–153:125–129

    Article  Google Scholar 

  7. Boukamp BA, Lesha GC, Huggins RA (1981) J Electrochem Soc 128:725–729

    Article  CAS  Google Scholar 

  8. Amezawa K, Yamamoto N, Tomii Y, Lto Y (1998) J Electrochem Soc 145:3313–3319

    Article  CAS  Google Scholar 

  9. Weydanz WJ, Wohlfahrt-Mehrens M, Huggins RA (1999) J Power Sources 81/82:237–242

    Google Scholar 

  10. Larcher D, Mudalige C, George AE, Porter V, Gharghouri M, Dahn JR (1999) Solid State Ionics 122:71–83

    Article  CAS  Google Scholar 

  11. Lee KL, Jung JY, Lee SW, Moon HS, Park JW (2004) J Power Sources 129:270–274

    Article  CAS  Google Scholar 

  12. Dimov N, Kugino S, Yoshio M (2004) J Power Sources 136:108–114

    Article  CAS  Google Scholar 

  13. Yoshio M, Tsumura T, Dimov N (2006) J Power Sources 163:215–218

    Article  CAS  Google Scholar 

  14. Kim JH, Sohn HJ, Kim H, Jeong G, Choi W (2007) J Power Sources 170:456–459

    Article  CAS  Google Scholar 

  15. Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y (2004) Solid State Ionics 168:61–68

    Article  CAS  Google Scholar 

  16. Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y (2005) J Power Sources 146:156–160

    Article  CAS  Google Scholar 

  17. Guo ZP, Wang JZ, Liu HK, Dou SX (2005) J Power Sources 146:448–451

    Article  CAS  Google Scholar 

  18. Wen ZS, Yang J, Wang BF, Wang K, Liu Y (2003) Electrochem Commun 5:165–168

    Article  CAS  Google Scholar 

  19. Shu J, Li H, Yang R, Shi Y, Huang X (2006) Electrochem Commun 8:51–54

    Article  CAS  Google Scholar 

  20. Zhang Y, Zhang XG, Zhang HL, Zhao ZG, Li F, Liu C (2006) Electrochim Acta 51:4994–5000

    Article  CAS  Google Scholar 

  21. Wang W, Kumta PN (2007) J Power Sources 172:650–658

    Article  CAS  Google Scholar 

  22. Iijima S (1991) Nature 354:56–58

    Article  CAS  Google Scholar 

  23. Maurin G, Bousquet Ch, Henn F, Bernier P, Almairac R, Simon B (1999) Chem Phys Lett 312:14–18

    Article  CAS  Google Scholar 

  24. Maurin G, Henn F, Simon B, Colomer JF, Nagy JB (2001) Nano Lett 175–79

  25. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37:61–69

    Article  CAS  Google Scholar 

  26. Ishihara T, Kawahara A, Nishigushi H, Yoshio M, Takita Y (2001) J Power Sources 97/98:822–825

    Google Scholar 

  27. Claye AS, Fischer JE, Huffmann CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147:2845–2852

    Article  CAS  Google Scholar 

  28. Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Chem Phys Lett 307:153–157

    Article  CAS  Google Scholar 

  29. Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2002) Phys Rev Lett 88(1):015502

    Article  CAS  Google Scholar 

  30. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Phys Rev Lett 84:5552–5555

    Article  CAS  Google Scholar 

  31. Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu Ch, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria G, Tománek D, Fischer JE, Smalley RE (1996) Science 273:483–487

    Article  CAS  Google Scholar 

  32. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Mater Sci Eng A334:173–178

    CAS  Google Scholar 

  33. Yang J, Takeda Y, Imanishi N, Capiglia C, Xie JY, Yamamoto O (2002) Solid State Ionics 152(153):125–129

    Article  Google Scholar 

  34. Wu X, Wang Z, Chen L, Huang X (2003) Electrochem Commun 5:935–939

    Article  CAS  Google Scholar 

  35. Wang C, Appleby AJ, Little FE (2001) Electrochim Acta 46:1793–1813

    Article  CAS  Google Scholar 

  36. Yang XL, Wen ZY, Zhang LL (2007) J Inorg Mater 23:2054–2058

    CAS  Google Scholar 

  37. Pu WH, Ren JG, Wan CR (2004) J Inorg Mater 19:86–92

    CAS  Google Scholar 

  38. Guo ZP, Zhao ZW, Liu HK, Dou SX (2005) Carbon 43:1392–1396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianning Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Y., Ding, J., Yuan, N. et al. Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries. J Solid State Electrochem 16, 1453–1460 (2012). https://doi.org/10.1007/s10008-011-1525-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1525-2

Keywords

Navigation