Skip to main content
Log in

Ordered mesoporous Sn–TiO2 catalysts via an evaporation induced self-assembly method for the Baeyer–Villiger oxidation of cyclohexanone by molecular oxygen

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In order to improve the catalytic performance in the Baeyer–Villiger oxidation of cyclohexanone by molecular oxygen, ordered mesoporous Sn–TiO2 catalysts with high Lewis acidity were successfully designed and synthesized via a facile one-pot evaporation induced self-assembly method. Their physical and chemical properties were characterized by different techniques including XRD, N2 adsorption–desorption, UV–Vis spectra, ICP, Py-IR, SEM and TEM. The XRD, TEM and N2 adsorption–desorption results showed that the ordered mesoporous structure can be preserved after tin incorporation. The UV–Vis, SEM and Py-IR results indicated that tin species can be homogeneously tetrahedrally incorporated in the crystalline framework of mesoporous anatase TiO2 and create the Lewis acidity. The ordered mesoporous 15Sn–TiO2 catalyst showed highest catalytic performance where cyclohexanone conversion of 91.4 % and ε-caprolactone selectivity of 93.2 %. Moreover, catalytic recycling tests demonstrated that the Sn–TiO2 catalysts exhibited high potential reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Rahman S, Enjamuri N, Gomes R, Bhaumik A, Sen D, Pandey JK, Enjamuri S, Chowdhury B (2015) Appl Catal A 505:515–523

    Article  CAS  Google Scholar 

  2. Alegria EC, Martins LM, Kirillova MV, Pombeiro AJ (2012) Appl Catal A 443:27–32

    Article  Google Scholar 

  3. Jiménez-Sanchidrián C, Ruiz JR (2008) Tetrahedron Lett 64:2011–2026

    Article  Google Scholar 

  4. Zhang G, Ren X, Zhang H, Peng Y, Gui S (2015) Catal Commun 58:59–63

    Article  CAS  Google Scholar 

  5. Renz M, Meunier B (1999) Eur J Org Chem 4:737–750

    Article  Google Scholar 

  6. Dutta B, Jana S, Bhunia S, Honda H, Koner S (2010) Appl Catal A 382:90–98

    Article  CAS  Google Scholar 

  7. Jeong EY, Ansari MB, Park SE (2011) Acs Catal 1:855–863

    Article  CAS  Google Scholar 

  8. Zang J, Ding Y, Yan L, Wang T, Lu Y, Gong L (2014) Catal Commun 51:24–28

    Article  CAS  Google Scholar 

  9. Ma Y, Liang Z, Feng S, Zhang Y (2015) Appl Organomet Chem 29:450–455

    Article  CAS  Google Scholar 

  10. Paul M, Pal N, Mondal J, Sasidharan M, Bhaumik A (2012) Chem Eng Sci 71:564–572

    Article  CAS  Google Scholar 

  11. Geng L, Zhang X, Zhang W, Jia M, Liu G (2014) Chem Commun 50:2965–2967

    Article  CAS  Google Scholar 

  12. Liu J, Qiao S, Hu Q (2011) Small 7:425–443

    Article  CAS  Google Scholar 

  13. Teng W, Wu Z, Fan J, Chen H, Feng D, Lv Y, Wang J, Asiri AM, Zhao D (2013) Energy Environ Sci 6:2765–2776

    Article  CAS  Google Scholar 

  14. Jeenpadiphat S, Björk EM, Odén M, Tungasmita DN (2015) J Mol Catal A 410:253–259

    Article  CAS  Google Scholar 

  15. Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423–425

    Article  CAS  Google Scholar 

  16. Jiménez-Sanchidrián C, Hidalgo JM, Llamas R, Ruiz JR (2006) Appl Catal A 312:86–94

    Article  Google Scholar 

  17. Corma A, Navarro MT, Renz M (2003) J Catal 219:242–246

    Article  CAS  Google Scholar 

  18. Sasidharan M, Kiyozumi Y, Mal NK, Paul M, Rajamohanan PR, Bhaumik A (2009) Micropor Mesopor Mater 126:234–244

    Article  CAS  Google Scholar 

  19. Taralkar US, Kalita P, Kumar R, Joshi PN (2009) Appl Catal A 358:88–94

    Article  CAS  Google Scholar 

  20. Min H, Ran X, Fan J, Su Y, Yang J, Teng W, Zhang W, Li G, Zhao D (2015) J Mater Chem A 3:7399–7405

    Article  CAS  Google Scholar 

  21. Zhou Z, Yu P, Qin J, Wu W, Xu L, Gu Z, Liu X (2016) J Porous Mater 23:239–245

    Article  CAS  Google Scholar 

  22. Yang Y, Tian C (2015) Res Chem Intermed 41:5271–5281

    Article  CAS  Google Scholar 

  23. Wang T, Yang G, Liu J, Yang B, Ding S, Yan Z, Xiao T (2014) Appl Surf Sci 311:314–323

    Article  Google Scholar 

  24. Hamdy MS (2014) J Mol Catal A 393:39–46

    Article  CAS  Google Scholar 

  25. Wang Y, Li B, Zhang C, Cui L, Kang S, Li X, Zhou L (2013) Appl Catal B 130:277–284

    Article  Google Scholar 

  26. Xia C, Ju L, Zhao Y, Xu H, Zhu B, Gao F, Lin M, Dai Z, Zou X, Shu X (2015) Chin J Catal 36:845–854

    Article  CAS  Google Scholar 

  27. Grosso D, Cagnol F, Soler-Illia G, Crepaldi EL, Amenitsch H, Bruneau AB, Bourgeois A, Sanchez C (2004) Adv Funct Mater 14:309–322

    Article  CAS  Google Scholar 

  28. Li W, Zhao D (2013) Chem Commun 49:943–946

    Article  CAS  Google Scholar 

  29. Pan D, Guo M, He M, Chen S, Wang X, Yu F, Li R (2014) J Mater Res 29:811–819

    Article  CAS  Google Scholar 

  30. Zhang X, Zhang F, Chan K (2005) Appl Catal A 284:193–198

    Article  CAS  Google Scholar 

  31. Miao Z, Zhao H, Yang J, Zhao J, Song H, Chou L (2014) Micropor Mesopor Mater 198:271–280

    Article  CAS  Google Scholar 

  32. Li W, Bai Y, Liu C, Yang Z, Feng X, Lu X, Laak NK, Chan KY (2009) Environ Sci Technol 43:5423–5428

    Article  CAS  Google Scholar 

  33. Yu M, Li C, Zeng G, Zhou Y, Zhang X, Xie Y (2015) Appl Surf Sci 342:174–182

    Article  CAS  Google Scholar 

  34. Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210–15216

    Article  CAS  Google Scholar 

  35. Chen M, Yang J, Liu Y, Li W, Fan J, Ran X, Teng W, Sun Y, Zhang W, Li G, Dou S, Zhao D (2015) J Mater Chem A 3:1405–1409

    Article  CAS  Google Scholar 

  36. Kumar N, Hazarika SN, Limbu S, Boruah R, Deb P, Namsa ND, Das SK (2015) Micropor Mesopor Mater 213:181–187

    Article  CAS  Google Scholar 

  37. Chen G, Ji S, Sang Y, Chang S, Wang Y, Hao P, Claverie J, Liu H, Yu G (2015) Nanoscale 7:3117–3125

    Article  CAS  Google Scholar 

  38. Pachamuthu MP, Shanthi K, Luque R, Ramanathan A (2013) Green Chem 15:2158–2166

    Article  CAS  Google Scholar 

  39. Zhang Q, Yang H, Yan W (2014) RSC Adv 4:56938–56944

    Article  CAS  Google Scholar 

  40. Nabae Y, Rokubuichi H, Mikuni M, Kuang Y, Hayakawa T, Kakimoto M (2013) ACS Catal 3:230–236

    Article  CAS  Google Scholar 

  41. Kaneda K, Ueno S, Imanaka T (1994) J Chem Soc, Chem Commun 25:797–798

    Article  Google Scholar 

  42. Murahashi SI, Oda Y, Naota T (1992) Tetrahedron Lett 33:7557–7560

    Article  CAS  Google Scholar 

  43. Ueno S, Ebitani K, Ookubo A, Kaneda K (1997) Appl Surf Sci 121:366–371

    Article  Google Scholar 

  44. Llamas R, Jiménez-Sanchidrián C, Ruiz JR (2007) React Kinet Catal Lett 90:309–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Jiangsu Planned Projects for Post-doctoral Research Funds (1302121C); Open Project of Beijing Key Laboratory for Enze Biomass and Fine Chemicals; Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Yu, Y., Yu, P. et al. Ordered mesoporous Sn–TiO2 catalysts via an evaporation induced self-assembly method for the Baeyer–Villiger oxidation of cyclohexanone by molecular oxygen. Reac Kinet Mech Cat 120, 295–305 (2017). https://doi.org/10.1007/s11144-016-1094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-016-1094-6

Keywords

Navigation