Skip to main content
Log in

Efficient Co3O4/SiO2 catalyst for the Baeyer–Villiger oxidation of cyclohexanone

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Silica-supported tricobalt tetraoxide (Co3O4/SiO2) catalysts prepared by the impregnation approach with different cobalt loadings were evaluated in the Baeyer–Villiger oxidation of cyclohexanone under Mukaiyama conditions. Among those catalysts with different cobalt contents, 0.5 wt% Co3O4/SiO2 afforded the best cyclohexanone conversion. Also, it provided comparable activity to regular cubic Co3O4, which was synthesized by a sophisticated hydrothermal method, under similarly mild conditions. Results of various physico-chemical characterizations, including XRD, HRTEM, TEM, H2-TPR and O2-TPD, revealed that highly dispersed Co3O4 catalysts showed higher reducibility than those lower dispersed catalysts and possessed more surface oxygen species which seemed reasonable to enhance catalytic activity. The application of Co3O4/SiO2 catalyst in oxidation of cyclohexanone is promising due to its relatively low-cost, high efficiency and excellent stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Baeyer A, Villiger V (1899) Ber Deut Bot Ges 32:3625–3633

    Article  Google Scholar 

  2. Corma A, Nemeth LT, Renz M, Valencia S (2001) Nature 412:423–425

    Article  CAS  Google Scholar 

  3. Corma A, Domine ME, Nemeth L, Valencia S (2002) J Am Chem Soc 124:3194–3195

    Article  CAS  Google Scholar 

  4. Renz M, Blasco T, Corma A, Fornés V, Jensen R, Nemeth L (2002) Chem Eur J 8:4708–4717

    Article  CAS  Google Scholar 

  5. Llamas R, Jiménez-Sanchidrián C, Ruiz JR (2007) Appl Catal B Environ 72:18–25

    Article  CAS  Google Scholar 

  6. Ruiz JR, Jiménez-Sanchidrián C, Llamas R (2006) Tetrahedron 62:11697–11703

    Article  CAS  Google Scholar 

  7. Kaneda K, Yamashita T (1996) Tetrahedron Lett 37:4555–4558

    Article  CAS  Google Scholar 

  8. Friess S, Farnham N (1950) J Am Chem Soc 72:5518–5521

    Article  CAS  Google Scholar 

  9. Murahashi SI, Oda Y, Naota T (1992) Tetrahedron Lett 23:7557–7560

    Article  Google Scholar 

  10. Giannandrea R, Mastrilli P, Nonile CF, Suranna GP (1994) J Mol Catal A Chem 94:27–36

    Article  CAS  Google Scholar 

  11. Subramanian H, Nettleton EG, Budhi S, Koodali RT (2010) J Mol Catal A Chem 330:66–72

    Article  CAS  Google Scholar 

  12. Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q, Wang Y, Takehira K (2005) J Mol Catal A Chem 236:99–106

    Article  CAS  Google Scholar 

  13. Raja R, Thomas JM, Sankar G (1999) Chem Commun 525–526

  14. Kaneda K, Ueno S, lmanaka T (1995) J Mol Catal A Chem 102:135–138

    Article  CAS  Google Scholar 

  15. Kaneda K, Ueno S, Imanaka T (1994) Chem Commun 797–98

  16. Chisem IC, Chisem J, Clark JH (1998) New J Chem 22:81–82

    Article  CAS  Google Scholar 

  17. Li YF, Guo MQ, Yin SF, Chen L, Zhou YB, Qiu RH, Au CT (2013) Carbon 55:269–275

    Article  CAS  Google Scholar 

  18. Nabae Y, Rokubuichi H, Mikuni M, Kuang Y, Hayakawa T, Kakimoto M-a (2013) ACS Catalysis 3:230–236

    Article  CAS  Google Scholar 

  19. Kawabata T, Fujisaki N, Shishido T, Nomura K, Sano T, Takehira K (2006) J Mol Catal A Chem 253:279–289

    Article  CAS  Google Scholar 

  20. Li XG, Wang F, Zhang H, Wang C, Song GQ (1996) Synthetic Commun 26:1613–1616

    Article  CAS  Google Scholar 

  21. Pagel HA, Noyce WK, Kelley MT (1935) J Am Chem Soc 57:2252–2253

    Article  Google Scholar 

  22. Li YF, Guo MQ, Yin SF, Chen L, Zhou YB, Qiu RH, Au CT (2013) Reac Kinet Mech Cat 109:525–535

    Article  CAS  Google Scholar 

  23. Puskas I, Fleisch TH, Full PR, Kaduk JA, Marshall CL, Meyers BL (2006) Appl Catal A Gen 311:146–154

    Article  CAS  Google Scholar 

  24. Zhu J, Kailasam K, Fischer A, Thomas A (2011) ACS Catalysis 1:342–347

    Article  CAS  Google Scholar 

  25. Ma CY, Zhen M, Li JJ, Jin YG, Cheng J, Lu GQ, Hao ZP, Qiao SZ (2010) J Am Chem Soc 132:2608–2613

    Article  CAS  Google Scholar 

  26. Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Surf Sci 86:335–344

    Article  CAS  Google Scholar 

  27. Yu Y, Takei T, Ohashi H, He H, Zhang X, Haruta M (2009) J Catal 267:121–128

    Article  CAS  Google Scholar 

  28. Luo J, Meng M, Li X, Zha Y, Hu T, Xie Y, Zhang J (2008) J Catal 254:310–324

    Article  CAS  Google Scholar 

  29. Zhao Z, Jin R, Bao T, Lin X, Wang G (2011) Appl Catal B Environ 110:154–163

    Article  CAS  Google Scholar 

  30. Li P, He C, Cheng J, Ma CY, Dou BJ, Hao ZP (2011) Appl Catal B Environ 101:570–579

    Article  CAS  Google Scholar 

  31. Lente G (2013) ACS Catalysis 3:381–382

    Article  CAS  Google Scholar 

  32. Conte M, Miyamura H, Kobayashi S, Chechik V (2010) Chem Commun 46:145

    Article  CAS  Google Scholar 

  33. McNesby JR, Heller CA (1954) Chem Rev 54:325–346

    Article  CAS  Google Scholar 

  34. Kishore D, Rodrigues AE (2008) Appl Catal A Gen 345:104–111

    Article  CAS  Google Scholar 

  35. Tang Q, Wang Y, Liang J, Wang P, Zhang Q, Wan H (2004) Chem Commun 440–441

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjie Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zang, J., Ding, Y., Pei, Y. et al. Efficient Co3O4/SiO2 catalyst for the Baeyer–Villiger oxidation of cyclohexanone. Reac Kinet Mech Cat 112, 159–171 (2014). https://doi.org/10.1007/s11144-014-0687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-014-0687-1

Keywords

Navigation