Skip to main content

Advertisement

Log in

A survey of fabrication and application of metallic foams (1925–2017)

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

This review focuses on contemporary metal foams, their fabrication techniques and commercial applications. Different type of foam synthesis techniques like open cell and closed cell foams using solid, liquid, ions or vapor metals are discussed along with their characteristic process parameters. A vast body of research has been established for producing metallic foams for many decades. Space holder methods, sponge replication method, vapor deposition method, hot isostatic pressing as well as powder metallurgy process have been extensively reported in available literature. Techniques like sponge replication have the capability to produce up to 98% porosity with considerable amount of strength. However, metallic foam fabrication of certain metals still poses many challenges, which need to be explored. Metallic foams have enormous industrial applications, like closed cell foams have structural applications, open cell foams can be used for structural as well as biomedical applications. Often open cell metal foams have encountered low fatigue strength that might need alloying as well heat treatment operations for strengthening. Moreover, it is important to understand the physics and techniques of foaming for fabricating a good quality foam, which is also discussed in this article. The focus of the review finally shifts to open cell metallic foams for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Banhart, in Department of Materials Science, Hahn-Meitner-Institut, Berlin, Germany, 2007, pp. 279–289

  2. M.F. Ashby, L. Tianjian, Met. Foam. A 6, 521–532 (2003)

    Google Scholar 

  3. L. Schneider, Metal Powder Rep. 55(1), 29–33 (2000)

    Article  Google Scholar 

  4. L. Lefebvre, J. Banhart, D.C. Dunand, Adv. Eng. Mater. 10, 775 (2008)

    Article  CAS  Google Scholar 

  5. Hydro Alum, Norway. Prod. Data sheets (1994)

  6. J. Banhart, J. Mater. Sci. 52, 22 (2000)

    CAS  Google Scholar 

  7. I. Duarte, M. Oliveira, in (Intechopen, 2003), pp. 47–72

  8. N. Babcsán, J. Banhart, D. Leitlmeier, Adv. Met. Mater. 5, 5–15 (2003)

    Google Scholar 

  9. J. Banhart, Prog. Mater. Sci. 46, 559 (2001)

    Article  CAS  Google Scholar 

  10. Z. Taslicukur, C. Balaban, N. Kuskonmaz, J. Eur. Ceram. Soc. 27(2), 637–640 (2007)

    Article  CAS  Google Scholar 

  11. S. Kim, C. Lee, Proc. Mater. Sci. 4, 305 (2014)

    Article  Google Scholar 

  12. G. Walther, D. Klöden, B. Kieback, R. Poss, P.M. Bienvenu, 2010 World Congr. Foams Porous Mater. 8 (2010)

  13. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.G.N. Wadley, Metal foams: a design guide (Butterworth-Heinemann, 2000)

  14. I. Jin, L.D. Kenny, H. Sang, US Patent 4,973,358 (1990)

  15. V.I. Shapovalov, US Patent 5,181,549 (1993)

  16. P. Pagalank, S. April, S. Francisco, D.S. Schwartz, A.G. Evans, Mater. Res. Soc. Symp. Proc. 521, 324 (1998)

    Google Scholar 

  17. L.M. Niebylski, C.P. Jarema, P.A. Immethun, US Patent, 794, 481 (1974)

  18. L.M. Niebylski, US Patent, 790, 367 (1974)

  19. H. Stanzick, L. Helfen, J. Banhart, Adv. Eng. Mater. 4, 814–823 (2002)

    Article  CAS  Google Scholar 

  20. M.S. Nasser, A.E. James, J. Eng. Sci. Technol. 4, 430 (2009)

    Google Scholar 

  21. Y. Yamada, C. Wen, K. Shimojima, M. Mabuchi, M. Nakamura, T. Asahina, T. Aizawa, K. Higashi, Mater. Trans. 9, 1136 (2000)

    Article  Google Scholar 

  22. D.T. Queheillalt, Y. Katsumura, H.N.G. Wadley, Scr. Mater. 50, 313 (2004)

    Article  CAS  Google Scholar 

  23. Z. Abdullah, S. Ahmad, M.F.M. Rafter, N.S.A. Manaf, ARPN J. Eng. Appl. Sci. X, 1–5 (2015)

  24. A. Salimon, Y. Brechet, M.F. Ashby, A.L. Greer, J. Mater. Sci, 40, 5793 (2005)

    Article  CAS  Google Scholar 

  25. D. Leitlmeier, H.P. Degischer, H.J. Flankl, Adv. Eng. Mater. 4, 735 (2002)

    Article  CAS  Google Scholar 

  26. S.K. Maiti, L.J. Gibson, M.F. Ashby, Adv. Eng. Mater. 32, 1963 (1984)

    CAS  Google Scholar 

  27. J. Banhart, H. W. Seeligner, Hahn-Meitner-Institut TU Berlin 3 (1996)

  28. A.L. Greer, Y. Brechet, M.F. Ashby, A. Salimon, J. Mater. Sci. 40, 5793 (2005)

    Article  Google Scholar 

  29. S. Xu, M. Bourham, A. Rabiei, Mater. Des. 31, 2140 (2010)

    Article  CAS  Google Scholar 

  30. B. Jiang, C. He, N. Zhao, P. Nash, C. Shi, Z. Wang, Nat. Publ. Gr. 1, 1–8 (2015)

    Google Scholar 

  31. L. Tan, M. Gong, F. Zheng, B. Zhang, K. Yang, Biomed. Mater. 4, 015016 (2009)

    Article  Google Scholar 

  32. J.-H. Lee, H.-E. Kim, K.-H. Shin, Y.-H. Koh, Mater. Lett. 64, 2526 (2010)

    Article  CAS  Google Scholar 

  33. S.P. Bruder, A.I. Caplan, Princ. Tissue Eng. 2, 683 (2000)

    Article  Google Scholar 

  34. A. Nouri, P.D. Hodgson, C. Wen, in Tech, Biomimetic porous titanium scaffolds for orthopedic and dental applications. Biomimetics learning from nature (2010)

  35. C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahima, Scr. Mater. 45, 1147 (2001)

    Article  CAS  Google Scholar 

  36. D.J. Cohen, W.J. Nelson, M.M. Maharbiz, Nat. Mater. 13, 409 (2014)

    Article  CAS  Google Scholar 

  37. D. Kuzum, H. Takano, E. Shim, J.C. Reed, H. Juul, A.G. Richardson, J. de Vries, H. Bink, M.A. Dichter, T.H. Lucas, D.A. Coulter, E. Cubukcu, B. Litt, Nat. Commun. 5, 5259 (2014)

    Article  CAS  Google Scholar 

  38. C. Ning, L. Zhou, G. Tan, Biochem. Pharmacol. 19, 2 (2016)

    Google Scholar 

  39. K. Rezwan, Biomaterials 27, 3413 (2006)

    Article  CAS  Google Scholar 

  40. B. Dhandayuthapani, Y. Yasuhiko, T. Maekawa, D.S. Kumar, Int. J. Polym. Sci. (2011)

  41. F. Matassi, A. Botti, L. Sirleo, C. Carulli, M. Innocenti, Clin. Cases Miner. Bone Metab. 10(2), 111–115 (2013)

    Google Scholar 

  42. Depuy, http://emea.depuysynthes.com/. Accessed Feb 10 2017

  43. R. Malhotra, Mastering Orthopedic Techniques: Total Knee Arthroplasty, (JP MedicalLtd, 2010)

  44. G. Chen, T. Ushida, T. Tateishi, Macromol. Biosci. 2, 67 (2002)

    Article  CAS  Google Scholar 

  45. A.H. Yusop, A.A. Bakir, N.A. Shaharom, M.R. AbdulKadir, H. Hermawan, Int. J. Biomater. 2012, 641430 (2012). doi:10.1155/2012/641430

    Article  CAS  Google Scholar 

  46. G.G. Walmsley, A. McArdle, R. Tevlin, A. Momeni, D. Atashroo, M.S. Hu, A.H. Feroze, V.W. Wong, P.H. Lorenz, M.T. Longaker, D.C. Wan, Biol. Med. 11(5), 1253–1263 (2015)

    CAS  Google Scholar 

  47. M. Gupta, G.K. Meenashisundaram, Insight into Designing Biocompatible, Magnesium Alloys and Composites, (Springer Briefs in Materials, 2015). doi:10.1007/978-981-287-372-9_2

  48. M. Steinacher, P. Mrvar, F. Zupanič, RMZ M&G 60, 239–247 (2013)

    CAS  Google Scholar 

  49. M. Cheng, T. Wahafu, W.L. Guo-feng Jiang, Y. Qiao, X. Peng, T. Cheng, X. Zhang, G. He, X. Liu, Sci. Rep. 6, 24134 (2016)

    Article  CAS  Google Scholar 

  50. G. Jiang, G. He, Mater. Sci. Eng. C 43, 317 (2014)

    Article  CAS  Google Scholar 

  51. Č. Jaroslav, D. Vojt, Mater. Sci. Eng. C 33, 564 (2013)

    Article  Google Scholar 

  52. J.S. Temeno, A.G. Mikos, Biomaterials 21, 2405–2412 (2000)

    Article  Google Scholar 

  53. M. Zhao, B. Song, J. Pu, T. Wada, B. Reid, G. Tai, F. Wang, A. Guo, P. Walczysko, Y. Gu, T. Sasaki, A. Suzuki, J.V. Forrester, H.R. Bourne, P.N. Devreotes, C.D. McCaig, J.M. Penninger, Nature 442, 457 (2006)

    Article  CAS  Google Scholar 

  54. S.V. Aradhya, M. Frei, M.S. Hybertsen, L. Venkataraman, Nat. Mater. 11, 872 (2012)

    Article  CAS  Google Scholar 

  55. L. Stanev, M. Kolev, B. Drenchev, L. Drenchev, J. Manuf. Sci. Eng. 139, 50802 (2016)

    Article  Google Scholar 

  56. M. Yazdimamaghani, M. Razavi, D. Vashaee, K. Moharamzadeh, A.R. Boccaccini, L. Tayebi, Mater. Sci. Eng. C 71, 1253 (2016)

    Article  Google Scholar 

  57. V. Manakari, G. Parande, M. Gupta, Metals (2017)

  58. L. Gibson, M. Ashby, Cellular Solids: Structure and Properties (Cambridge Solid State Science Series), vol. 4 (Cambridge University Press, Cambridge, 1997). doi:10.1017/CBO9781139878326

    Book  Google Scholar 

  59. N.V. Pulagara, S. Saini, R.S. Dondapati, Prog. Nanotechnol. Nanomater. 4, 7 (2015)

    Article  Google Scholar 

  60. F. Garcia-moreno, M. Mukherjee, J. Banhart, Int. J. Mater. Res. 101, 1134 (2010)

    Article  CAS  Google Scholar 

  61. A. Kennedy, in Tech, Powder Metal. (2012). doi:10.5772/33060

  62. A. Kennedy, Metals 2, 122 (2012)

    Article  Google Scholar 

  63. G. Ryan, A. Pandit, D.P. Apatsidis, Biomaterials 27, 2651 (2006)

    Article  CAS  Google Scholar 

  64. F. Ifam, Open Porous Alum. Foam. Met. Hybrid Struct. 1, 1–2 (2017)

    Google Scholar 

  65. F. Akhtar, Can. J. Metall. Mater. Sci. 53, 253 (2014)

    CAS  Google Scholar 

  66. J. Banhart, J. Baumeister, M. Weber, Proc. Eur. Conf. Adv. PM Mater. 95, 201–208 (1995)

    Google Scholar 

  67. S. Asavavisithchai, A.R. Kennedy, Adv. Eng. Mater. 8, 810 (2006)

    Article  CAS  Google Scholar 

  68. I. Oh, N. Nomura, N. Masahashi, S. Hanada, Scr. Mater. 49, 1197 (2003). doi:10.1016/j.scriptamat.2003.08.018

    Article  CAS  Google Scholar 

  69. C. Yu, H.H. Eifert, Mater. Res. Innov. 2, 181 (1998)

    Article  CAS  Google Scholar 

  70. C. Park, S.R. Nutt, Mater. Sci. Eng. A 288(1), 111–118 (2000)

    Article  Google Scholar 

  71. S. Asavavisithchai, A.R. Kennedy, J. Colloid Interface Sci. 8, 715 (2006)

    Article  Google Scholar 

  72. A. Tsetsekou, C. Agrafiotis, I. Leon, A. Milias, J. Eur. Ceram. Soc. 21, 493 (2001)

    Article  CAS  Google Scholar 

  73. S. Angel, W. Bleck, P. Scholz, T. Fend, Steel Res Intl 21, 483 (2004)

    Article  Google Scholar 

  74. G.E. Ryan, A.S. Pandit, D.P. Apatsidis, Biomaterials 29, 3625 (2008)

    Article  CAS  Google Scholar 

  75. H.I. Bakan, K. Korkmaz, Mater. Des. 83, 154 (2015)

    Article  CAS  Google Scholar 

  76. A. Manonukul, M. Tange, P. Srikudvien, N. Denmud, P. Wattanapornphan, Powder Technol. 266, 129–134 (2014)

    Article  CAS  Google Scholar 

  77. J.P. Li, C.A. Van Blitterswijk, K. De Groot, J. Mater. Sci. Mater. Med. 15(9), 951–958 (2004)

    Article  CAS  Google Scholar 

  78. C. Wang, H. Chen, X. Zhu, Z. Xiao, K. Zhang, X. Zhang, Mater. Sci. Eng. C 70, 1192–1199 (2016)

    Article  Google Scholar 

  79. M. Amirjan, H. Khorsand, Powder Technol. 254, 12 (2014)

    Article  CAS  Google Scholar 

  80. J.P. Li, J.R. De Wijn, C.A. Van Blitterswijk, K. De Groot, Biomaterials 27, 1223 (2006)

    Article  CAS  Google Scholar 

  81. V. Karageorgiou, D. Kaplan, Biomaterials 26, 5474 (2005)

    Article  CAS  Google Scholar 

  82. M.P. Staiger, I. Kolbeinsson, N.T. Kirkland, T. Nguyen, G. Dias, T.B.F. Woodfield, Mater. Lett. 64, 2572 (2010)

    Article  CAS  Google Scholar 

  83. P.C. Angelo, S.R. Powder, Metal. Sci. Technol. Appl. 88, 88–90 (2008)

    Google Scholar 

  84. Z. Esen, E. Tarhan Bor, Ş. Bor, Turk. J Eng. Environ. Sci. 33, 207 (2009)

    CAS  Google Scholar 

  85. GKN, http://www.gkn.com/. Accessed 15 Feb 2017

  86. J. Banhart, J. Baumeister, Fraunhofer-Institute Appl. Mater. Res. 3, 3–11 (1998)

    Google Scholar 

  87. Sumitomo Electrical Group, http://global-Sei.com/. Accessed 10 Feb 2017

  88. H.N.G. Queheillalt, D.T. Hass, D.D. Sypeck, D.J. Wadley, Dep. Mater. Sci. Eng. Sch. Eng. Appl. Sci. 16, 1028–1036 (2001)

    CAS  Google Scholar 

  89. N.T. Koizumi Takuya, K. Kota, K. Kazuhiko, M. Koichi, G. Svyatoslav, Mater. Trans. 52, 728 (2011)

    Article  Google Scholar 

  90. J. Banhart, Adv. Eng. Mater. 8, 781 (2006)

    Article  CAS  Google Scholar 

  91. A. Brown, S. Zaky, H. Ray, C. Sfeir, Acta Biomater. 11, 543 (2015)

    Article  CAS  Google Scholar 

  92. J.P. Li, S.H. Li, A.C. Van Blitterswijk, K. De Groot. J. Biomed. Mater. Res. 73, 223 (2005)

    Article  CAS  Google Scholar 

  93. C.S.Y. Jee, Z.X. Guo, J.R.G. Evans, N. Özgüven, Metal. Mater. Trans. B 31, 1345 (2000)

    Article  Google Scholar 

  94. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, J. Biomed. Mater. Res. 74, 782 (2005)

    Article  Google Scholar 

  95. X. Lin, in Foaming of Stainless Steel Powder Slurries. (University of Nottingham, Nottingham, 2011)

    Google Scholar 

  96. H. Nakajima, Porous Metals with Directional Pores, (Springer, Japan, 2013). doi:10.1007/978-4-431-54017-5_2

  97. Y. Oshida, U.S. Patent 6, 066, 176, (2000)

  98. S.K. Hyun, T. Ikeda, H. Nakajima, Sci. Technol. Adv. Mater. 5, 201 (2004)

    Article  CAS  Google Scholar 

  99. R. Thiruvengadathan, V. Korampally, A. Ghosh, N. Chanda, K. Gangopadhyay, S. Gangopadhyay, Rep. Prog. Phys. 76(6), 066501 (2013)

    Article  Google Scholar 

  100. A.L. Rosa, M. Yan, R. Fernandez, X. Wang, E. Zegarra, Top-down and Bottom-up approaches to nanotechnology An overview in the context of developing Proton-fountain Electric-field-assisted Nanolithography (PEN) (2013)

  101. U. Wiesner, L. Houghton, S.M. Gruner, CHESS News magagine, (2009)

  102. Y.S. Chou, R.P. Krauss, W. Zhang, L. Guo, L. Zhuang, Am. Vacuum Soc. (1997)

  103. B.D. Gates, Q. Xu, M. Stewart, D. Ryan, C.G. Willson, G.M. Whitesides, Chem. Rev., 105 (2015)

  104. Self Assembly, http://www.dummies.com. Accessed 5 June 2017

  105. A. Geoffrey, K. Hou, B.V. Lotsch, L. Cademartiri, D.P. Puzzo, F. Scotognella, A. Ghadimi, J. Thomson, Materialstoday, 12, 12–23 (2009)

    Google Scholar 

  106. K.-C. Chang, H.-I. Lu, C.-W. Peng, M.-C. Lai, S.-C. Hsu, M.-H. Hsu, Y.-K. Tsai, C.-H. Chang, W.-I. Hung, Y. Wei, J.-M. Yeh, ACS Appli. Mater. Interfaces 4, 1460–1467 (2013)

    Article  Google Scholar 

  107. G. Akay, B. Calkan, J. Nanomater. 2015, 275705 (2015). doi:10.1155/2015/275705

    Article  Google Scholar 

  108. H.-C. Shin, M. Liu, Chem. Mater. 16, 5460–5464 (2004)

    Article  CAS  Google Scholar 

  109. F.G. Moreno, Materials, 9, 85 (2016)

    Article  Google Scholar 

  110. Alantum, Innovations in Alloy Foams, http://www.alantum.com/. Accessed 10 Feb 2017

  111. Metal Foam, http://www.metalfoam.net/. Accessed 10 Feb 2017

  112. Alcarbon, http://www.alcarbon.de/. Accessed 10 Feb 2017

  113. Aluinvent, http://www.aluinvent.com/. Accessed 10 Feb 2017

  114. Alulight, https://www.ecka-granules.com/. Accessed 10 Feb 2017

  115. Alveotech, http://alveotech.com.br/. Accessed 10 Feb 2017

  116. Ecocontact, http://en.amcetec.com/. Accessed 10 Feb 2017

  117. Exxentis, http://www.exxentis.co.uk/. Accessed 10 Feb 2017

  118. Foamtech, http://www.foamtechantifire.com/. Accessed 10 Feb 2017

  119. Fraunhofer Institute, https://www.iwu.fraunhofer.de/. Accessed 10 Feb 2017

  120. E.B. Park, http://www.goodfellow.com/. Accessed 10 Feb 2017

  121. Hollomet, http://www.hollomet.com. Accessed 10 Feb 2017

  122. Alofoam, http://kr.kompass.com/. Accessed 10 Feb 2017

  123. Duocel, http://www.ergaerospace.com/. Accessed 10 Feb 2017

  124. Mitsubishi, http://www.mmc.co.jp/. Accessed 10 Feb 2017

  125. Pohltec Metalfoam, http://en.metalfoam.de/. Accessed 10 Feb 2017

  126. Porometal, http://www.porometal.com/. Accessed 10 Feb 2017

  127. Reade Advance Materials, http://www.reade.com/. Accessed 10 Feb 2017

  128. Recemet, http://www.recemat.nl/. Accessed 10 Feb 2017

  129. Aluminum Foams, http://selee.com/. Accessed 10 Feb 2017

  130. Porous Refractory Metals, http://www.spectramat.com/. Accessed 10 Feb 2017

  131. Ceramic and Metal Foams, http://www.ultramet.com. Accessed 10 Febr 2017

  132. S. Metal, F. Cartridges, Porvair filtration group, Sinterflow, pp 3–8

  133. Aluminum Foam Panel, http://www.chinabeihai.net/. Accessed 10 Feb 2017

  134. O.A. Abdelaa, S.M. Darwish, World Acad. Sci. Eng. Technol. Int. Sci. Index 59, 1325 (2011)

    Google Scholar 

  135. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. 4, 773 (2008)

    Article  CAS  Google Scholar 

  136. Y. Torres, J.J. Pavón, J.A. Rodríguez, J. Mater. Process. Technol. 212, 1061 (2012)

    Article  CAS  Google Scholar 

  137. J.J. Yoon, T.G. Park, J. Biomed. Mater. Res. 55, 401 (2001)

    Article  CAS  Google Scholar 

  138. J.M. Ferri, J.M. Molina, E. Louis, Biomed. Phys. Eng. Express 1, 45002 (2015)

    Article  Google Scholar 

  139. V.C. Srivastava, K.L. Sahoo, IIM Metal News 9, 1–6 (2006)

    Google Scholar 

  140. M. Garcia-Avilaa, M. Portanovab, A. Rabiei, Proc. Mater. Sci. 4, 151–156 (2014)

    Article  Google Scholar 

  141. S.J. Hollister, Nature Publishing Group, 4 (2005)

  142. Magmaris, http://www.magmaris.com/en, Accessed 5 June 2017

  143. Titanium, http://investor.xtantmedical.com, Accessed 5 June 2017

  144. I. Vicario, I. Crespo, I.K. Idoiaga, L.M. Plaza, P. Caballero, Metals 6, 24 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Bhatnagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Bhatnagar, N. A survey of fabrication and application of metallic foams (1925–2017). J Porous Mater 25, 537–554 (2018). https://doi.org/10.1007/s10934-017-0467-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0467-1

Keywords

Navigation