Skip to main content

Advanced Research Developments and Commercialization of Light Weight Metallic Foams

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications
  • 228 Accesses

Abstract

Metallic foams (MFs) are a moderately new class of designing materials having a unique kind of properties including high strength-to-weight ratio and appealing energy absorption characteristics contrasted with their bulk counterparts. These striking properties of MFs make them reasonable for applications in wide areas, e.g., impact energy absorption, load-bearing sandwich cores for aerospace and ground transportation industries, in automobile components to reduce weight, as heat sinks for thermal management, fortifying building and transport structures against impacts or buckling, etc. The various manufacturing processes are grouped by the state of matter in which the metal is handled – solid, liquid, gaseous, or ionized. This chapter reports the most simple and versatile process called “replication process” which offers a versatile way to produce open-cell foams, also called metal sponges. The basis of this process was developed in the 1960s, which uses a leachable preform (NaCl particles work well for aluminum), into which a molten material is infiltrated under inert gas pressure and solidified, before leaching of the preform to leave an open-celled structure. Replication process can be implicated to manufacture pure aluminum and other alloy foams of various materials and sizes. Replication can be done by covering with metal vapor, electroplating, or investment casting. Different structures can be utilized as templates for making cell materials: free or sintered main part of inorganic or natural granular issue, hollow spheres, or even customary polymer structures which are changed over to a metallic structure in an assigned preparing step.

The present chapter also reports an investigation of metallic foams which has turned out to be appealing to analysts keen on both scientific and industrial applications. The ideology of research is focused on manufacturing process of lightweight metallic foam. This chapter is focused on making production more reliable and to improve the properties of foamed metals. A second important field is the investigation of structure-property relationships. Intuitively it seems obvious that uniform metal foam with smooth cell walls yields the best mechanical properties. Third, modeling of metal foam structures is important for being able to interpret the experimental data and to help design engineers to apply the material. Besides these areas there are other more technological fields of interest such as joining, cutting, or coating of metal foams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc 84(1):230–232

    Article  CAS  Google Scholar 

  2. Atisivan R, Bose S, Bandyopadhyay A (2001) Porous mullite preforms via fused deposition. J Am Ceram Soc 84(1):221–223

    Article  CAS  Google Scholar 

  3. Cichocki FR Jr, Trumble KP (1998) Tailored porosity gradients via colloidal infiltration of compression-molded sponges. J Am Ceram Soc 81(6):1661–1664

    Article  CAS  Google Scholar 

  4. Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Y (2018) A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol 95(5-8):2641–2659

    Article  Google Scholar 

  5. Banhart J (2013) Light-metal foams – history of innovation and technological challenges. Adv Eng Mater 15(3):82–111

    Article  CAS  Google Scholar 

  6. Nayebi A, Surmiri A (2018) Characterization of mechanical properties of metallic foams by instrumented indentation test. Metall Res Technol 115(4):405

    Article  Google Scholar 

  7. Feng Q, Wu X, Guo Y, She J, Xiang Y (2018) The effect of aluminum dihydrogen phosphate on the enhanced mechanical properties of aluminum foams. Mater Trans 59(6):922–926

    Article  CAS  Google Scholar 

  8. Taherishargh M, Linul E, Broxtermann S, Fiedler T (2018) The mechanical properties of expanded perlite-aluminium syntactic foam at elevated temperatures. J Alloys Compd 737:590–596

    Article  CAS  Google Scholar 

  9. Sosnik A (1948) US Patent 2434 775

    Google Scholar 

  10. Niebylski LM, Charema CP, Lee TE (1974a) US Patent 3743 353

    Google Scholar 

  11. Fiedler SO, Bjorksten J, Fielder WS (1961) US Patent 2979 392

    Google Scholar 

  12. Liu X, Wei Y, Jin D, Shih WH (2000) Synthesis of mesoporous aluminum alkoxide and tartaric acid. Mater Lett 42(3):143–149

    Article  CAS  Google Scholar 

  13. Wang LZ, Shi JL, Yu J, Zhang WH, Yan DS (2000) Temperature control in the synthesis of cubic mesoporous silica materials. Mater Lett 45(5):273–278

    Article  CAS  Google Scholar 

  14. Lange FF, Miller KT (1987) Open-cell, low density ceramics fabricated from reticulated polymer substrate. Adv Ceram Mater 2(4):827–831

    Article  CAS  Google Scholar 

  15. Powell SJ, Evans JRG (1995) The structure of ceramic foams prepared from polyurethane–ceramic suspensions. Mater Manuf Process 10(4):757–771

    Article  CAS  Google Scholar 

  16. Sherman J, Tuffias RH, Kaplan RB (1991) Refractory ceramic foams: a novel, new high-temperature structure. Am Ceram Soc Bull 70(6):1025–1029

    CAS  Google Scholar 

  17. Peng HX, Fan Z, Evans JRG, Busfield JJC (2000) Microstructure of ceramic foams. J Eur Ceram Soc 20(7):807–813

    Article  CAS  Google Scholar 

  18. Lyckfildt O, Ferreira JMF (1998) Processing of porous ceramics by starch consolidation. J Eur Ceram Soc 18(2):131–140

    Article  Google Scholar 

  19. Komarneni S, Pach L, Pidugu R (1995) Porous-alumina ceramics using boehmite and rice flour. Mater Res Soc Symp Proc 371:285–290

    CAS  Google Scholar 

  20. Schmidt H, Koch D, Grathwohl G, Colombo P (2001) Micro-/Macroporous ceramics from preceramic precursors. J Am Ceram Soc 84(10):2252–2255

    Article  CAS  Google Scholar 

  21. Colombo P, Roisman TG, Scheffler M, Buhler P, Greil P (2001) Conductive ceramic foams from preceramic polymers. J Am Ceram Soc 84(10):2265–2268

    Article  CAS  Google Scholar 

  22. Kuchek HA (1966) US Patent 3236 706

    Google Scholar 

  23. Thiele W (1971) German Patent 1933 321

    Google Scholar 

  24. Gilani H, et al. (2012) Effect of processing parameters and glycerin addition on the properties of Al foams. Met Mater Int 18(2):327–333

    Google Scholar 

  25. Sharma V, Ghose J, Kumar S (2012) Compressive and acoustic behavioural analysis of Al-MMC foam for industrial applications. J I Eng (India): Series C 93(1):33–40

    Google Scholar 

  26. Kreigh JR, Gibson JK (1962) US Patent 3055 763

    Google Scholar 

  27. Geramipour T, Oveisi H (2017) Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method. T Nonferr Metal Soc 27(7):1569–1579

    Google Scholar 

  28. Pen, sinteza in karakterizacija aluminijevih, and dolomita in titanovega hidrida kot penilnega.(2014) Synthesis and characterization of Al foams produced by powder metallurgy route using dolomite and titanium hydride as a foaming agents. Materiali in tehnologije 48(6):943–947

    Google Scholar 

  29. Chang C, Shen B, Inoue A (2006) FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties. Appl Phys Lett 89(5):051912

    Google Scholar 

  30. Wang W-H, Dong C, Shek CH (2004) Bulk metallic glasses. Mat Sci Eng R 44(2–3):45–89

    Google Scholar 

  31. Kündig AA, et al. (2002) Influence of low oxygen contents and alloy refinement on the glass forming ability of Zr52. 5Cu17. 9Ni14. 6Al10Ti5. Mater T 43(12):3206–3210

    Google Scholar 

  32. Liu CT, Chisholm MF, Miller MK (2002) Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics 10(11–12):1105–1112

    Google Scholar 

  33. Merrett RP, Langdon GS, Theobald MD (2013) The blast and impact loading of aluminium foam. Mater Des 44:311–319

    Google Scholar 

  34. Dandliker RB, Conner RD, Johnson WL (1998) Melt infiltration casting of bulk metallic-glass matrix composites. J Mater Res 13(10):2896–2901

    Google Scholar 

  35. Choi-Yim H, et al. (1999) Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15. 4Ni12. 6 bulk metallic glass composites. Acta Mater 47(8):2455–2462

    Google Scholar 

  36. Choi-Yim H, et al. (2002) Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15. 4Ni12. 6 bulk metallic glass composites. Acta Mater 50(10):2737–2745

    Google Scholar 

  37. Peroni M, Solomos G, Pizzinato V (2013) Impact behaviour testing of aluminium foam. Int J Impact Eng 53:74–83

    Google Scholar 

  38. Jin I, Kenny LD, Sang H (1990) US Patent 4 973 358, PCT Patent WO 91/03578 (1991); PCT Patent WO 92/03582 (1992); US Patent 5 112 696 (1992)

    Google Scholar 

  39. Thomas M, Kenny LD (1994) PCT Patent WO 94/172218

    Google Scholar 

  40. Wood JT (1998) Metal foams. In: Proceedings of the Fraunhofer USA metal foam symposium 7–8.10.1997, Stanton, Delaware. Eds.: J. Banhart and H. Eifert, MIT Verlag/Publishing, Bremen, p 31

    Google Scholar 

  41. Ruch W, Kirkevag B (1990) International Patent Application PCT/NO90/00115; WO 91/01387 (1991)

    Google Scholar 

  42. D.J. Lloyd, A.D. McLeod, P.L. Morris, I. Jin, PCT Patent WO 91/19823 (1991)

    Google Scholar 

  43. Kenny LD, Thomas M (1994) PCT Patent WO 94/09931

    Google Scholar 

  44. Sang H, Kenny LD, Jin I (1992) PCT Patent WO 92/21457

    Google Scholar 

  45. Prakash O, et al. (1997) Light weight cellular structures based on aluminium. No. LA-UR-96-4083; CONF-970248-1. Los Alamos National Lab., NM (United States)

    Google Scholar 

  46. Zheng Y, Sridhar S, Russell KC (1995) Advances in porous materials. Komareni S, et al, (eds) MRS Society Bull 371:365

    Google Scholar 

  47. Akiyama S et al (1986) European Patent Application EP 0 210803 A1, US Patent4 713 277 (1987)

    Google Scholar 

  48. Otsuka M, Kojima A, Itoh M, Ishii E (1991) Science and engineering of light metals. In: Proceedings of the conference on RASELM ’91, Tokyo, Oct. 1991, Ed.: Japan Institute of Light Metals, p 999

    Google Scholar 

  49. Duarte I, Banhart J (2000) A study of aluminium foam formation–kinetics and microstructure. Acta Mater 48(9):2349–2362

    Google Scholar 

  50. Thiele W (1972) German Patent, 1 933 321 (1971); Metals and Materials, Aug. 1972, p 349

    Google Scholar 

  51. Hartmann M, Singer RF (1997) Metallschäume. In: Proceedings of the symposium on metal foams, 6.-7.3.1997, Bremen, Germany. Ed.: J. Banhart, MIT-Verlag/Publishing Bremen, p 39, (in German); this symposium R5.5

    Google Scholar 

  52. Banhart J (2005) Aluminium foams for lighter vehicles. Int J Vehicle Des 37(2–3):114–125

    Google Scholar 

  53. Degischer H-P, Kriszt B (2002) Handbook of cellular metals. Wiley-VCH, Weinheim

    Book  Google Scholar 

  54. Banhart J, Schmoll C, Neumann U (1998) In: Faria L (ed) Materials in oceanic environment. Sociedade Portuguesa de Materiais, Lisbon, p 55

    Google Scholar 

  55. Dannemann KA, et al. (2004) Dynamic compression of aluminum foam processed by a freeform fabrication technique. AIP Conference Proceedings. Vol. 706. No. 1. American Institute of Physics

    Google Scholar 

  56. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal foams – a design guide. Butterworth-Heinemann, London

    Google Scholar 

  57. Simancik F, Rajner W, Laag R (2002) In: Ghosh A, Sanders TH, Claar TD (eds) Processing and properties of lightweight cellular metals and structures. TMS, Seattle, p 25

    Google Scholar 

  58. Allen BC, Mote MW, Sabroff AM (1963) Method for making foamed metal, USA Patent 3,087,807

    Google Scholar 

  59. Baumeister J, Banhart J, Weber M (1994) Verfahren zur Herstellung eines metallischen Verbundwerkstoffs. [Process for manufacturing metallic composite materials] German Patent. 44 26 627 C2

    Google Scholar 

  60. Banhart J, Seeliger H-W (2008) Aluminium foam sandwich panels: manufacture, metallurgy and applications. Adv Eng Mater 10(9):793–802

    Google Scholar 

  61. Helwig H-M, Garcia-Moreno F, Banhart J (2011a) A study of Mg and Cu additions on the foaming behaviour of Al–Si alloys. J Mater Sci 46(15):5227–5236

    Google Scholar 

  62. Helwig HM, Banhart J, Seeliger HW (2011b) Metallschäume aus einer Aluminium legierung, ihre Verwendung und Verfahren zur Herstellung [Metal foams made of an aluminium alloy, use and manufacturing route], European Patent EP 2 143 809

    Google Scholar 

  63. Simančík F, Lúčan L, Jerz J (2001) Reinforced aluminium foams. Cell Metals and Metal Foaming Technology (MetFoam2001) 365

    Google Scholar 

  64. Andrews EW, Sanders W, Gibson LJ (1999) Compressive and tensile behaviour of aluminum foams. Mater Sci Eng A 270(2):113–124

    Article  Google Scholar 

  65. Simone AE, Gibson LJ (1998a) Aluminum foams produced by liquid-state processes. Ada Materialia 46(9):3109–3123

    Google Scholar 

  66. Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenestedt J, Evans AG (1997a) On the mechanical performance of closed cell Al alloy foams. Acta Mater 45(12):5245–5259

    Google Scholar 

  67. Gibson LJ, Ashby MF (1982) On the mechanical performance of closed cell Al alloy foams. Proc R Soc A 382:43–59

    CAS  Google Scholar 

  68. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  69. Ko WL (1965) Deformation of foamed elastomers. J Cell Plast 1:45–50

    Article  Google Scholar 

  70. Dilley DC (1974) Foametal–its properties and applications. Mach Prod Eng 125: 24–25

    Google Scholar 

  71. Thornton PH, Magee CL (1975a) The deformation of aluminum foams. Metall Trans A 6(6):1253–1263

    Google Scholar 

  72. Berry Jr CB, Fanning RJ (1972) US Patent 3705 030

    Google Scholar 

  73. Berry Jr CB (1972) US Patent 3669654

    Google Scholar 

  74. Berry Jr CB, Valdo AR (1973) US Patent 3725 037

    Google Scholar 

  75. Niebylski LM, Jarema CP, Immethun PA (1974b) US Patent 3794 481

    Google Scholar 

  76. Bjorksten J, Rock EJ (1972) US Patent 3794481

    Google Scholar 

  77. Niebylski LM, Jarema CP, Lee TE (1976) US Patent 3940 262

    Google Scholar 

  78. Jiang B, Wang Z, Zhao N (2007) Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scripta Mater 56(2):169–172

    Google Scholar 

  79. Fabrizio Q, et al. (2011) Replication casting of open-cell AlSi7Mg0. 3 foams. Mater Lett 65(17–18):2558–2561

    Google Scholar 

  80. Ashby MF, Hutchinson JW, Evans AG (1998) Cellular metals, a design guide. Cambridge University Press, Cambridge

    Google Scholar 

  81. Conclusions VI, Sugimura Y, Meyer J, He MY, Bart-Smith H, Grenestedt J, Evans AG (1997b) Acta Mater 45:5245

    Google Scholar 

  82. McCullough KYG, Fleck NA, Ashby FM (1999) Toughness of aluminium alloy foams. Acta Mater 47(8):2331–2343

    Google Scholar 

  83. Veyhl C, et al. (2011) Thermal analysis of aluminium foam based on micro-computed tomography. Materialwiss Werkst 42(5):350–355

    Google Scholar 

  84. Duarte I, Vesenjak M, LovreKrstulović-Opara (2014) Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam. Compos Struct 109:48–56

    Google Scholar 

  85. Dickenson C (1997) Filters and filtration handbook, 3rd edn. Elsevier Science Publishers, Oxford

    Google Scholar 

  86. Lehtovaara A, Mojtahedi W (1993) Ceramic filters behavior in gasification. Bioresour Technol 46:113–118

    Article  CAS  Google Scholar 

  87. Eggerstedt PM, Zievers JF, Zievers EC (1993) Choose the right ceramic for filtering hot gases. Chem Eng Prog 89:62–62

    Google Scholar 

  88. Acosta FA, Castillejos AH, Almanza JM, Flores A (1995) An analysis of liquid flow through ceramic porous media used for molten metal filtration. Metall Mater Process Trans B 26B:159–171

    Article  Google Scholar 

  89. Sheppard LM (1993) Porous ceramics: processing and applications. Ceramic transactions – porous materials. Am Ceram Soc Bull 31:3–23

    CAS  Google Scholar 

  90. Seeliger H-W (2002) Manufacture of aluminum foam sandwich (AFS) components. Adv Eng Mater 4(10):753–758

    Google Scholar 

  91. Beals JT, Thompson MS (1997) Density gradient effects on aluminium foam compression behaviour. J Mater Sci 32(13):3595–3600

    Google Scholar 

  92. Neugebauer R, Hipke T (2006) Machine tools with metal foams. Adv Eng Mater 8(9):858–863

    Google Scholar 

  93. Neugebauer R, Hipke T (2006) Machine tools with metal foams. Adv Eng Mater 8:858–863. [CrossRef]

    Article  CAS  Google Scholar 

  94. Pohltec metalfoam. Available online: http://metalfoam.de/. Accessed on 27 July 2015

  95. IWU. Available online: http://www.iwu.fraunhofer.de/. Accessed on 27 July 2015

  96. Lenel FV (1980) Powder metallurgy principles and applications. Metal Powder Industries Federation, London

    Google Scholar 

  97. Dattoma V, et al. (2009) Prediction of residual fatigue life of aluminium foam through natural frequencies and damping shift. Fatigue Fract Eng M 32(7):601–616

    Google Scholar 

  98. Haruta M, et al. (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115(2):301–309

    Google Scholar 

  99. Park C, Nutt SR (2001) Effects of process parameters on steel foam synthesis. Mater Sci Eng: A 297(1–2):62–68

    Google Scholar 

  100. Arwade SR, et al. (2011) Steel foam material processing, properties and potential structural applications. Structural Materials and Mechanics, Proceedings of the 2011 NSF Engineering Research and Innovation Conference, Atlanta, GA, USA. Vol. 47. 2011

    Google Scholar 

  101. Kretz R, Hombergsmeier E, Eipper K (1999) Metal foams and porous metal structures. In: Banhart J, Ashby MF, Fleck NA (eds) International conference, Bremen, Germany, 14–16 June. MIT Press–Verlag, Bremen, p 23

    Google Scholar 

  102. Thiele W (1972) Aluminium used as an impact energy absorbing material. Met Mater 6:349–352

    Google Scholar 

  103. Rakow JF, Waas AM (2004) Size effects in metal foam cores for sandwich structures. AIAA J 42(7):1331–1337

    Google Scholar 

  104. Weimer GA (1976) Foamed Metals Start to Realize Potential. Iron Age 218(8):33–34

    Google Scholar 

  105. Evans AG, Hutchinson JW, Ashby MF (1998) Multifunctionality of cellular metal systems. Prog Mater Sci 43(3):171–221

    Google Scholar 

  106. Simone AE, Gibson LJ (1998) Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 46(6):2139–2150

    Google Scholar 

  107. Schwartz DS, et al. (1998) Materials Research Society, Symposium Proceedings, Volume 521. Porous and Cellular Materials for Structural Applications. Materials Research Society Warreendale PA

    Google Scholar 

  108. Simone AE, Gibson LJ (1998b) Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater 46(6):2139–2150

    Google Scholar 

  109. Sanders W, Gibson LJ (1998) Porous and cellular materials for structural applications. In: Schwartz DS, Shih DS, Evans AG, Wadley HNG (eds) MRS Symp Proc, vol 521, p 53. MRS Spring, San Francisco.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harshit, K., Gupta, P. (2021). Advanced Research Developments and Commercialization of Light Weight Metallic Foams. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_7

Download citation

Publish with us

Policies and ethics