Skip to main content
Log in

Microstructure, thermal and electrical properties of polyaniline/phenolic composite aerogel

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Phenolic aerogel was first fabricated by sol–gel polymerization and freeze-drying method. Then, it was soaked into aniline solvent for 1 day. Ultimately, polyaniline/phenolic (PANI/RF) composite aerogel was obtained after the aniline molecules inside the phenolic aerogel were polymerized into polyaniline. The microstructure, thermal and electrical properties of the composites were investigated. The experimental results showed that polyaniline wires adhere to the surface of the micro holes skeleton which can be observed from the SEM images. Thus, polyaniline wires will form much smaller network inside the RF network, exhibiting an interpenetrating 3D network structure. In addition, compared with RF aerogel, PNAI/RF aerogel had maintained the thermal performance well, which showed mildly decline in heat-resistance and increase in heat conductivity, respectively. What’s more, it exhibited superior electrical performance (good specific capacitance) as compared with that of RF aerogel which is non-conducting, In general, PANI/RF aerogel with low heat conductivity (0.021 W/mK), high electrical conductivity (0.12 S/cm) and specific capacitance (280 F/g) exhibited more excellent comprehensive performance than single RF aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Wang, S.J. Wang, C. Bian, Y.H. Zhong, X.L. Jing, Polym. Eng. Sci. 111, 239 (2015)

    CAS  Google Scholar 

  2. L.P. Bian, J.Y. Xiao, J.C. Zeng, S.L. Xing, C.P. Yin, A.Q. Jia, Mater. Design 54, 230 (2014)

    Article  CAS  Google Scholar 

  3. U.A. Amran, S. Zakaria, C.H. Chia, S.N. Jaafar, R. Roslan, Ind. Crop. Prod. 72, 54 (2015)

    Article  CAS  Google Scholar 

  4. R. Zhang, Y.G. Lu, L. Zhan, X.Y. Liang, G.P. Wu, L.C. Ling, Carbon 41, 1660 (2003)

    Article  CAS  Google Scholar 

  5. S.A. Song, Y.S. Chung, S.S. Kim, Compos. Sci. Technol. 103, 85 (2014)

    Article  CAS  Google Scholar 

  6. J.Y. Zhu, X. Yang, Z.B. Fu, C.Y. Wang, W.D. Wu, L. Zhang, J. Porous Mater. 23, 1217 (2016)

    Article  CAS  Google Scholar 

  7. T. A. El-Brolossy, S. S. Ibrahim, E. A. Alkhudhayr, Polym. Compos. 36, 1242 (2014)

    Article  Google Scholar 

  8. E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Renew. Sust. Energ. Rev. 34, 273 (2014)

    Article  CAS  Google Scholar 

  9. J.Y. Zhu, X. Yang, Z.B. Fu, C.Y. Wang, W.D. Wu, L. Zhang, Chem. Eur. J. 22, 2515 (2016)

    Article  CAS  Google Scholar 

  10. R.J. Goldstein, E.R.G. Eckert, W.E. Ibele, S.V. Patankar, T.W. Simon, T.H. Kuehn, P.J. Strykowski, K.K. Tamma, A. Bar-Cohen, J.V.R. Heberlein, J.H. Davidson, J. Bischof, F.A. Kulacki, U. Kortshagen, S. Garrick, V. Srinivasan, Int. J. Heat. Mass Transf. 48, 819 (2005)

    Article  Google Scholar 

  11. E.M. Sparrow, S.S. Kang, W. Chuck, Int. J. Heat. Mass Transf. 30, 1237 (1987)

    Article  CAS  Google Scholar 

  12. S. P. Gumfekar, W. Wang, B. X. Zhao, Macromol. Mater. Eng. 229, 966 (2014)

    Article  Google Scholar 

  13. H.B. Zhao, L. Yuan, Z.B. Fu, C.Y. Wang, X. Yang, J.Y. Zhu, J. Qu, H.B. Chen, D.A. Schiraldi, ACS Appl. Mater. Interfaces 8, 9917 (2016)

    Article  CAS  Google Scholar 

  14. Y. E. Miao, W. Fan, D. Chen, T. Liu, ACS Appl. Mater. Interfaces 5, 4423 (2013)

    Article  CAS  Google Scholar 

  15. M.A. Rahman, Y.C. Wong, G.S. Song, C. Wen, J. Porous Mater. 22, 1313 (2015)

    Article  CAS  Google Scholar 

  16. Y.N. Meng, K. Wang, Y.J. Zhang, Z.X. Wei, Adv. Mater. 25, 6985 (2013)

    Article  CAS  Google Scholar 

  17. F.H. Meng, Y. Ding, Adv. Mater. 23, 4098 (2011)

    Article  CAS  Google Scholar 

  18. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 18, 1345 (2006)

    Article  CAS  Google Scholar 

  19. R. A. Green, S. Baek, L. A. Polle-Warren, P. J. Martens, Sci. Technol. Adv. Mater. 11, 14107 (2010)

    Article  Google Scholar 

  20. T.Y. Dai, Y.J. Jia, Polymer 52, 2550 (2011)

    Article  CAS  Google Scholar 

  21. P.C. Rodrigues, G.P. Souza, J.D. Damottaneto, L. Akcelrud, Polymer 43, 5493 (2002)

    Article  CAS  Google Scholar 

  22. R. Yao, Z.J. Yao, J.T. Zhou, Mater. Lett. 176, 199 (2016)

    Article  CAS  Google Scholar 

  23. W.J. Jiang, W.J. Luo, R.L. Zong, W.Q. Yao, Z.P. Li, Y.F. Zhu, Small 12, 4370 (2016)

    Article  CAS  Google Scholar 

  24. W.W. Li, F.X. Gao, X.Q. Wang, N. Zhang, M.M. Ma, Angew. Chem. Int. Ed. 55, 9196 (2016)

    Article  CAS  Google Scholar 

  25. D.Y. Zhai, B.R. Liu, Y. Shi, L.J. Pan, W.B. Li, ACS Nano 7, 3540 (2013)

    Article  CAS  Google Scholar 

  26. H.F. An, Y. Wang, X.Y. Wang, N. Li, L.P. Zheng, J. Solid State Electrochem. 14, 651 (2010)

    Article  CAS  Google Scholar 

  27. R. Yao, Z.J. Yao, J.T. Zhou, Polym. Compos. (2015). doi:10.1002/pc.23811

    Google Scholar 

  28. T. Mori, T.E. Smith, J. Urban Econ. 89, 1 (2015)

    Article  Google Scholar 

  29. S.J. Wang, Y. Wang, C. Bian, Y.H. Zhong, X.L. Jing, Appl. Surf. Sci. 331, 519 (2015)

    Article  CAS  Google Scholar 

  30. J.Z. Feng, J. Feng, Y.G. Jiang, C.R. Zhang, Mater. Lett. 65, 3454 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (PAPD) as well as National Natural Science Foundation of China (Funding No. 51672129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, R., Yao, Z. & Zhou, J. Microstructure, thermal and electrical properties of polyaniline/phenolic composite aerogel. J Porous Mater 25, 495–501 (2018). https://doi.org/10.1007/s10934-017-0461-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-017-0461-7

Keywords

Navigation