Skip to main content

Advertisement

Log in

Highly insulating polymeric aerogels derived from hollow material-filled gel emulsion

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing aerogel materials that combine high-thermal-insulation properties with excellent mechanical robustness is of great interest for real applications in various conditions with diverse temperature and humidity ranges. However, many aerogel materials currently available exhibit limited thermal insulation capabilities, thereby hindering the development of materials with specific functions. Therefore, it is crucial to construct bulk materials with outstanding thermal insulation performance over a wide temperature range. In this work, we designed and synthesized hollow glass microsphere cross-linked polymeric aerogels by using a water-modulated additive-loading soft-template strategy. The resulting composite aerogels possess three-dimensional hierarchically interconnected networks with high porosity (95.0%) and low density (40 mg cm−3). These aerogels exhibit excellent mechanical properties, with a compression strength of 0.40 MPa, as well as exceptional thermal conductivity of 23.0 mW m−1 K−1 lower than the commonly accepted super-insulating criterion. Remarkably, these aerogels maintain a thermal conductivity below 32.0 mW m−1 K−1 even at a temperature as high as 210 °C. Therefore, the mechanically strong and super-insulating polymeric aerogels, synthesized through a low-cost, environmentally friendly and scalable technology, hold significant promise as practical thermal insulation materials for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hsu PC, Liu C, Song AY, Zhang Z, Peng YC, Xie J, Liu K, Wu CL, Catrysse PB, Cai LL, Zhai S, Majumdar A, Fan SH, Cui Y (2017) A dual-mode textile for human body radiative heating and cooling. Sci Adv 3:e1700895

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang J, Cheng Y, Tebyetekerwa M, Meng S, Zhu M, Lu Y (2019) “Stiff-soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv Funct Mater 29:1806407

    Article  Google Scholar 

  3. Hu F, Wu S, Sun Y (2019) Hollow-structured materials for thermal insulation. Adv Mater 31:1801001

    Article  Google Scholar 

  4. Zhang X, Cheng X, Si Y, Yu J, Ding B (2022) All-ceramic and elastic aerogels with nanofibrous-granular binary synergistic structure for thermal superinsulation. ACS Nano 16:5487–5495

    Article  CAS  PubMed  Google Scholar 

  5. Yang F, Zhao X, Xue T, Yuan S, Huang Y, Fan W, Liu T (2021) Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment. Sci China Mater 64:1267–1277

    Article  CAS  Google Scholar 

  6. Zhu Y, Zhu J, Yu Z, Ye Y, Sun X, Zhang Y, Zhu P, Jiang F (2022) Air drying scalable production of hydrophobic, mechanically stable, and thermally insulating lignocellulosic foam. Chem Eng J 450:138300

    Article  CAS  Google Scholar 

  7. Wu B, Yang C, Xin Q, Kong L, Eggersdorfer M, Ruan J, Zhao P, Shan J, Liu K, Chen D, Weitz DA, Gao X (2021) Attractive pickering emulsion gels. Adv Mater 33:2102362

    Article  CAS  Google Scholar 

  8. Fan W, Zhang X, Zhang Y, Zhang Y, Liu T (2019) Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos Sci Technol 173:47–52

    Article  CAS  Google Scholar 

  9. Lin J, Yuan X, Li G, Huang Y, Wang W, He X, Yu C, Fang Y, Liu Z, Tang C (2017) Self-assembly of porous boron nitride microfibers into ultralight multifunctional foams of large sizes. ACS Appl Mater Interfaces 9:44732–44739

    Article  CAS  PubMed  Google Scholar 

  10. Stiernet P, Aqil A, Zhu X, Debuigne A (2020) Multicomponent radziszewski emulsion polymerization toward macroporous poly(ionic liquid) catalysts. ACS Macro Lett 9:134–139

    Article  PubMed  Google Scholar 

  11. Liu J, Chen X, Yang H, Tang J, Miao R, Liu K, Fang Y (2021) Gel-emulsion templated polymeric aerogels for solar-driven interfacial evaporation and electricity generation. Mater Chem Front 5:1953–1961

    Article  CAS  Google Scholar 

  12. Zhou X, Ma H, Chen R, Yan J, Wang G (2023) Experimental and theoretical indagation of binder-free N-graphene coupling vanadium tetrasulfide aerogel cathode for promoting aqueous Zn-ion storage. ACS Appl Energy Mater 6:3808–3821

    Article  CAS  Google Scholar 

  13. Liu J, Li M, Wang P, Liu K, Fang Y (2018) Gel-emulsion templated polymeric monoliths for efficient removal of particulate matters. Chem Eng J 339:14–21

    Article  CAS  Google Scholar 

  14. Bai L, Greca LG, Xiang W, Lehtonen J, Huan S, Nugroho RWN, Tardy BL, Rojas OJ (2019) Adsorption and assembly of cellulosic and lignin colloids at oil/water interfaces. Langmuir 35:571–588

    Article  CAS  PubMed  Google Scholar 

  15. Shi G, He S, Chen G, Ruan C, Ma Y, Chen Q, Jin X, Liu X, He C, Du C, Dai H, Yang X (2022) Crayfish shell-based micro-mesoporous activated carbon: insight into preparation and gaseous benzene adsorption mechanism. Chem Eng J 428:131148

    Article  CAS  Google Scholar 

  16. Xu X, Fu S, Guo J, Li H, Huang Y, Duan X (2021) Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Mater Today 42:162–177

    Article  CAS  Google Scholar 

  17. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, New York

    Book  Google Scholar 

  18. Su L, Li MZ, Wang HJ, Niu M, Lu D, Cai ZX (2019) Resilient Si3N4 nanobelt aerogel as fire-resistant and electro-magnetic wave-transparent thermal insulator. ACS Appl Mater Interfaces 11:15795–15803

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Q, Wang X, Tao X, Li Z, Li X, Zhang Z (2019) Polyvinyl alcohol composite aerogel with remarkable flame retardancy, chemical durability and self-cleaning property. Compos Commun 15:96–102

    Article  Google Scholar 

  20. Wei Y, Wang Z, Wang J, Bai W, Zhang Y, Liu B (2023) Designing of trimetallic-phase ternary metal sulfides coupled with N/S doped carbon protector for superior and safe Li/Na storage. J Colloid Interface Sci 638:524–541

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Cao Y, Wang Z, Zhao Y, He C, Zhao F, Han C, Yu S (2024) Superior and safer lithium sulfur batteries realized by robust polysulfides-retarding dam with high fame retardance. J Energy Chem 89:471–486

    Article  CAS  Google Scholar 

  22. Dou L, Zhang X, Cheng X, Ma Z, Wang X, Si Y, Yu J, Ding B (2019) Hierarchical cellular structured ceramic nanofibrous aerogels with temperature-invariant superelasticity for thermal insulation. ACS Appl Mater Interface 11:29056–29064

    Article  CAS  Google Scholar 

  23. Chen Y, Klima KM, Brouwers HJH, Yu Q (2022) Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: the role of aerogel particle size. Compos B Eng 242:110048

    Article  CAS  Google Scholar 

  24. He S, Huang Y, Chen G, Feng M, Dai H, Yuan B, Chen X (2019) Effect of heat treatment on hydrophobic silica aerogel. J Hazard Mater 362:294–302

    Article  CAS  PubMed  Google Scholar 

  25. Zhu L, Liu Y, Jiang Z, Sakai E, Qiu J, Zhu P (2019) Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as cross-linker. Cellulose 26:5291–5303

    Article  CAS  Google Scholar 

  26. Song J, Chen C, Zhu S, Zhu M, Dai J, Ray U, Li Y, Kuang Y, Li Y, Quispe N, Yao Y, Gong A, Leiste UH, Bruck HA, Zhu JY, Vellore A, Li H, Minus ML, Jia Z, Martini A, Li T, Hu L (2018) Processing bulk natural wood into a high-performance structural material. Nature 554:224–228

    Article  CAS  PubMed  Google Scholar 

  27. Liu D, Han G, Huang J, Zhang Y (2009) Composition and structure study of natural nelumbo nucifera fiber. Carbohydr Polym 75:39–43

    Article  CAS  Google Scholar 

  28. Qian Z, Wang Z, Ning Z, Xu J, Lian J (2018) Aerogels derived from polymer nanofibers and their applications. Macromol Rapid Commun 39:1700724

    Article  Google Scholar 

  29. Silverstein MS (2014) Emulsion-templated porous polymers: a retrospective perspective. Polymer 55:304–320

    Article  CAS  Google Scholar 

  30. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112:3959–4015

    Article  CAS  PubMed  Google Scholar 

  31. Zhang T, Sanguramath RA, Israel S, Silverstein MS (2019) Emulsion templating: porous polymers and beyond. Macromolecules 52:5445–5479

    Article  CAS  Google Scholar 

  32. Foudazi R (2021) HIPEs to polyHIPEs. React Funct Polym 164:104917

    Article  CAS  Google Scholar 

  33. Zhao T, Zhang T, Xu Z, Zhao Y (2022) Emulsion-based, flexible and recyclable aerogel composites for latent heat storage. J Colloid Interf Sci 627:72–80

    Article  CAS  Google Scholar 

  34. Williams JM, Gray AJ, Wilkerson MH (1990) Emulsion stability and rigid foams from styrene or divinylbenzene water-in-oil emulsions. Langmuir 6:437–444

    Article  CAS  Google Scholar 

  35. Berglund LA, Burgert I (2018) Bioinspired wood nano technology for functional materials. Adv Mater 30:1704285

    Article  Google Scholar 

  36. Zhu Y, Huan S, Bai L, Ketola A, Shi X, Zhang X, Ketoja JA, Rojas OJ (2020) High internal phase oil-in-water pickering emulsions stabilized by chitin nanofibrils: 3D structuring and solid foam. ACS Appl Mater Interfaces 12:11240–11251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim M, Eo K, Lim HJ, Kwon YK (2018) Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres. Compos Sci Technol 165:355–361

    Article  CAS  Google Scholar 

  38. Ren J, Huang X, Shi J, Wang W, Li J, Zhang Y, Zhang Y, Chen H, Han R, Chen G, Li Q, Zhou Z (2022) Transparent, robust, and machinable hybrid silica aerogel with a ‘‘rigid-flexible” combined structure for thermal insulation, oil/water separation, and self-cleaning. J Colloid Interface Sci 623:1101–1110

    Article  CAS  Google Scholar 

  39. Liu J, Wang P, He Y, Liu K, Miao R, Fang Y (2019) Polymerizable nonconventional gel emulsions and their utilization in the template preparation of low-density, high-strength polymeric monoliths and 3d printing. Macromolecules 52:2456–2463

    Article  CAS  Google Scholar 

  40. Tao S, Guan X, Li Y, Jiang H, Gong S, Ngai T (2022) All-natural oil-in-water high internal phase pickering emulsions featuring interfacial bilayer stabilization. J Colloid Interface Sci 607:1491–1499

    Article  CAS  PubMed  Google Scholar 

  41. Gurevitch I, Silverstein MS (2010) Polymerized pickering HIPEs: effects of synthesis parameters on porous structure. J Polym Sci Part A Polym Chem 48:1516–1525

    Article  CAS  Google Scholar 

  42. Zhao Y, Zhao Z, Zhang J, Wei M, Xiao L, Hou L (2018) Distinctive performance of gemini surfactant in the preparation of hierarchically porous carbons via high-internal-phase emulsion template. Langmuir 34:12100–12108

    Article  CAS  PubMed  Google Scholar 

  43. Quell A, Bergolis B, Drenckhan W, Stubenrauch C (2016) How the locus of initiation influences the morphology and the pore connectivity of a monodisperse polymer foam. Macromolecules 49:5059–5067

    Article  CAS  Google Scholar 

  44. Zhang T, Guo Q (2017) Continuous preparation of polyHIPE monoliths from ionomer-stabilized high internal phase emulsions (HIPEs) for efficient recovery of spilled oils. Chem Eng J 307:812–819

    Article  CAS  Google Scholar 

  45. Sun Q, Dai Z, Meng X, Xiao F (2015) Porous polymer catalysts with hierarchical structures. Chem Soc Rev 44:6018–6034

    Article  CAS  PubMed  Google Scholar 

  46. Wei T, Chang T, Lu S, Chang Y (2007) Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J Am Ceram Soc 90:2003–2007

    Article  CAS  Google Scholar 

  47. Zu G, Shen J, Zou L, Wang W, Lian Y, Zhang Z, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mater 25:4757–4764

    Article  CAS  Google Scholar 

  48. Liang C, Wang Z, Wu L, Zhang X, Wang H, Wang Z (2017) Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl Mater Interfaces 9:29950–29957

    Article  CAS  PubMed  Google Scholar 

  49. Niu Y, Wang S, Zhu Z, Su M, Wang Y, Yan L, Ma Y, Sun H, Liang W, Li A (2022) Hollow glass microspheres modified polyurethane sponge with enhanced flame retardancy. J Appl Polym Sci 139:e52723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (22202158, 22272100, 21872091), Young Talents Program of Shaanxi Province (CLGC202203) and the Key Research and Development Program of Shaanxi (2023-YBGY-170).

Author information

Authors and Affiliations

Authors

Contributions

Jianfei Liu was involved in investigation, validation, visualization, writing original-draft, project administration and funding acquisition; Yang Yang contributed to investigation, methodology and formal analysis; Xiaolong An was responsible for methodology; Hui Yang helped with software; and Kaiqiang Liu took part in writing-review & editing, formal analysis, project administration and funding acquisition.

Corresponding authors

Correspondence to Jianfei Liu or Kaiqiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7441 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., An, X., Yang, Y. et al. Highly insulating polymeric aerogels derived from hollow material-filled gel emulsion. J Mater Sci 59, 6778–6791 (2024). https://doi.org/10.1007/s10853-024-09607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09607-3

Navigation