Skip to main content

Advertisement

Log in

Preparation and characterization of hybrid aerogels from novolac and hydroxyl-terminated polybutadiene

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a novel approach was introduced to reduce the brittle behavior of phenolic aerogels. Hydroxy-terminated polybutadiene (HTPB) resin, a low-molecular weight rubbery material, was used to modify novolac-type phenolic aerogels. The aerogels were prepared by two-step sol–gel polymerization at high temperature/pressure process followed by ambient pressure drying. First, HTPB chains were introduced into the novolac network during the gelation and then, were consolidated in the novolac structure through reaction with toluene diisocyanate (TDI). The resulting aerogels containing different amounts of HTPB (0–50 wt%) exhibited low bulk density in the range of 0.14–0.23 g/cm3. By increasing the amount of HTPB, the change was observed in microstructure, morphology, and physical properties which corresponded well with mechanical properties and thermal conductivity variations. The measured compression modulus of the aerogels was found to decrease from 96.0 (for pure novolac) to 11.8 MPa with addition of HTPB, indicating some extent of flexibility in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Tech 199:10–26. doi:10.1016/j.jmatprotec.2007.10.060

    Article  Google Scholar 

  2. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  3. Brinker CJ, Scherer GW (1990) Sol-gel science, the physics and chemistry of Sol-gel processing. Academic Press, London

    Google Scholar 

  4. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227. doi:10.1007/bf01139044

    Article  Google Scholar 

  5. Fricke J, Pekala RW, Alviso CT, Kong FM, Hulsey SS (1992) Aerogels derived from multifunctional organic monomers. J Non Cryst Solids 145:90–98. doi:10.1016/S0022-3093(05)80436-3

    Article  Google Scholar 

  6. Durairaj RB (2005) Resorcinol: chemistry, technology and application. Springer, Germany

    Google Scholar 

  7. ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23(26):2887–2903. doi:10.1002/adma.201100283

    Article  Google Scholar 

  8. Liu J, Qiao ShZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQ (2011) Extension of the Stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int 50:5947–5951. doi:10.1002/anie.201102011

    Article  Google Scholar 

  9. Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non Cryst Solids 188(1–2):34–40. doi:10.1016/0022-3093(95)00027-5

    Article  Google Scholar 

  10. Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non Cryst Solids 225:36–40. doi:10.1016/S0022-3093(98)00103-3

    Article  Google Scholar 

  11. Leventis N, Sotiriou-Leventis C, Mohite DP, Larimore ZJ, Mang JT, Churu G, Lu H (2011) Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mater 23(8):2250–2261. doi:10.1021/cm200323e

    Article  Google Scholar 

  12. Daniel C, Giudice S, Guerra G (2009) Syndiotatic polystyrene aerogels with β, γ, and ε crystalline phases. Chem Mater 21:1028–1034. doi:10.1021/cm802537g

    Article  Google Scholar 

  13. Lee JK, Gould GL (2010) Polyolefin-based aerogel. US Patent No 7,691,911 B2

  14. Gouerec P, Miousse D, Tran-van F, Dao LH (1999) Characterizaion of pyrolyzed polyacrylonitrile aerogel thin films used in double-layer supercapacitors. J New Mater Electrochem Syst 2:221–226

    Google Scholar 

  15. Schwan M, Ratke L (2013) Flexibilisation of resorcinol–formaldehyde aerogels. J Mater Chem A 1:13462. doi:10.1039/c3ta13172f

    Article  Google Scholar 

  16. Schwan M, Naikade M, Raabe D, Ratke L (2015) From hard to rubber-like: mechanical properties of resorcinol–formaldehyde aerogels. J Mater Sci 50(16):5482–5493. doi:10.1007/s10853-015-9094-x

  17. Hajizadeh A, Bahramian A, Sharif A (2014) Effect of rubber modification on the morphology and properties of novolac nanostructures. Adv Mater Res 829(1):41–45

  18. Job N, Théry A, Pirard R, Marien J, Kocon L, Rouzaud J-N, Béguin F, Pirard J-P (2005) Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43(12):2481–2494. doi:10.1016/j.carbon.2005.04.031

    Article  Google Scholar 

  19. Czakkel O, Marthie K, Geissler E, Laszlo K (2005) Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Micros Meso Mater 86:124–133. doi:10.1016/j.micromeso.2005.07.021

    Article  Google Scholar 

  20. Saliger R, Bock V, Petricevic R, Tillotson T, Geis S, Fricke J (1997) Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J Non Cryst Solids 221:144–150. doi:10.1016/S0022-3093(97)00411-0

    Article  Google Scholar 

  21. Reuß M, Ratke L (2008) Subcritical dried RF-aerogels catalysed by hydrochloric acid. J Sol Gel Sci Technol 47(1):74–80. doi:10.1007/s10971-008-1733-0

    Article  Google Scholar 

  22. Wu D, Fu R, Zhang S, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42(10):2033–2039. doi:10.1016/j.carbon.2004.04.003

    Article  Google Scholar 

  23. Wu D, Fu R (2008) Requirements of organic gels for a successful ambient pressure drying preparation of carbon aerogels. J Porous Mater 15(1):29–34. doi:10.1007/s10934-006-9048-4

    Article  Google Scholar 

  24. Naseri I, Kazemi A, Bahramian AR, Razzaghi Kashani M (2014) Preparation of organic and carbon xerogels using high-temperature–pressure sol–gel polymerization. Mater Des 61:35–40. doi:10.1016/j.matdes.2014.04.061

    Article  Google Scholar 

  25. Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol Gel Sci Technol 52(1):56–64. doi:10.1007/s10971-009-1992-4

    Article  Google Scholar 

  26. Hajizadeh A, Bahramian AR, Sharif A (2014) Investigation of the effect of sol concentration on the microstructure and morphology of Novolac hyperporous. J Non Cryst Solids 402:53–57. doi:10.1016/j.jnoncrysol.2014.05.019

    Article  Google Scholar 

  27. Fischer U, Saliger R, Bock V, Petricevic R, Fricke J (1997) Carbon aerogels as electrode material in supercapacitors. J Porous Mater 4(4):281–285. doi:10.1023/a:1009629423578

    Article  Google Scholar 

  28. Hu Y, Chung Y, Mackenzie JD (1993) Gelation kinetics of an organically modified silicate. J Mater Sci 28(24):6549–6554. doi:10.1007/BF00356392

    Article  Google Scholar 

  29. Hu Y, Mackenzie JD (1992) Rubber-like elasticity of organically modified silicates. J Mater Sci 27(16):4415–4420. doi:10.1007/BF00541574

    Article  Google Scholar 

  30. Mackenzie JD, Chung YJ, Hu CY (1992) Section 6. Processing methods: rubbery ormosils and their applications. J Non Cryst Solids 147&148:271–279. doi:10.1016/S0022-3093(05)80629-5

    Article  Google Scholar 

  31. Kramer SJ, Rubio-Alonso F, Mackenzie JD (1996) Organically modified silicate aerogels, “Aeromosils”. MRS Online Proc Libr 435:295–300. doi:10.1557/PROC-435-295

    Article  Google Scholar 

  32. Mackenzie JD, Bescher E (1998) Structures, properties and potential applications of ormosils. J Sol Gel Sci Technol 13(1–3):371–377. doi:10.1023/A:1008600723220

    Article  Google Scholar 

  33. Mackenzie JD (1994) Structures and properties of ormosils. J Sol Gel Sci Technol 2(1–3):81–86. doi:10.1007/BF00486217

    Article  Google Scholar 

  34. Hajizadeh A, Bahramian A, Seifi A, Naseri I (2015) Effect of initial sol concentration on the microstructure and morphology of carbon aerogels. J Sol Gel Sci Technol 73(1):220–226. doi:10.1007/s10971-014-3520-4

    Article  Google Scholar 

  35. Job N, Pirard R, Pirard J-P, Alié C (2006) Non-intrusive mercury porosimetry: pyrolysis of resorcinol-formaldehyde xerogels. Part Part Syst Charact 23(1):72–81. doi:10.1002/ppsc.200601011

    Article  Google Scholar 

  36. Egger CC, Fresne CD, Raman VI, Schädler V, Frechen T, Roth SV, Müller-Buschbaum P (2008) Characterization of highly porous polymeric materials with pore diameters larger than 100 nm by mercury porosimetry and X-ray scattering methods. Langmuir 24(11):5877–5887. doi:10.1021/la800197p

    Article  Google Scholar 

  37. Pirard R, Rigacci A, Maréchal JC, Quenard D, Chevalier B, Achard P, Pirard JP (2003) Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry. Polymer 44(17):4881–4887. doi:10.1016/S0032-3861(03)00481-6

    Article  Google Scholar 

  38. Alié C, Pirard R, Pirard J-P (2001) Mercury porosimetry applied to porous silica materials: successive buckling and intrusion mechanisms. Colloids Surf A 187–188:367–374. doi:10.1016/S0927-7757(01)00651-3

    Article  Google Scholar 

  39. Miller RA (2009) Method for measuring thermal conductivity of small samples having very low thermal conductivity. NASA Glenn research center, NASA/TM-2009-215460

  40. Gommes CJ, Roberts AP (2008) Structure development of resorcinol-formaldehyde gels: microphase separation or colloid aggregation. Phys Rev E 77 (4):041409-1–13.doi:10.1103/PhysRevE.77.041409

  41. Alié C, Pirard R, Lecloux AJ, Pirard J-P (1999) Preparation of low-density xerogels through additives to TEOS-based alcogels. J Non Cryst Solids 246(3):216–228. doi:10.1016/S0022-3093(99)00088-5

    Article  Google Scholar 

  42. Pirard R, Alié C, Pirard J-P (2002) Characterization of porous texture of hyperporous materials by mercury porosimetry using densification equation. Powder Technol 128(2–3):242–247. doi:10.1016/S0032-5910(02)00185-7

    Article  Google Scholar 

  43. Gibson LJ, Ashby MF (1997) Cellular solids, structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  44. Ma H-S, Prévost J-H, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure–property relationship of aerogels. J Non Cryst Solids 285(1–3):216–221. doi:10.1016/S0022-3093(01)00456-2

    Article  Google Scholar 

  45. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47(22):7636–7645. doi:10.1016/j.polymer.2006.09.004

    Article  Google Scholar 

  46. Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non Cryst Solids 188(3):226–234. doi:10.1016/0022-3093(95)00191-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ministry of Science, Research and Technology of Iran for the financial support for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouhollah Bagheri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzamani, M., Bagheri, R., Bahramian, A.R. et al. Preparation and characterization of hybrid aerogels from novolac and hydroxyl-terminated polybutadiene. J Mater Sci 51, 7861–7873 (2016). https://doi.org/10.1007/s10853-016-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0042-1

Keywords

Navigation